Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows

Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in... The objective of this work is to investigate the feasibility of intense laser-beam propagation through optical fibers for temperature and species concentration measurements in gas-phase reacting flows using coherent anti-Stokes Raman scattering (CARS) spectroscopy. In particular, damage thresholds of fibers, nonlinear effects during beam propagation, and beam quality at the output of the fibers are studied for the propagation of nanosecond (ns) and picosecond (ps) laser beams. It is observed that ps pulses are better suited for fiber-based nonlinear optical spectroscopic techniques, which generally depend on laser irradiance rather than fluence. A ps fiber-coupled CARS system using multimode step-index fibers is developed. Temperature measurements using this system are demonstrated in an atmospheric pressure, near-adiabatic laboratory flame. Proof-of-concept measurements show significant promise for fiber-based CARS spectroscopy in harsh combustion environments. Furthermore, since ps-CARS spectroscopy allows the suppression of non-resonant background, this technique could be utilized for improving the sensitivity and accuracy of CARS thermometry in high-pressure hydrocarbon-fueled combustors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows

Loading next page...
 
/lp/springer_journal/investigation-of-optical-fibers-for-coherent-anti-stokes-raman-zpsxGVuiAK
Publisher
Springer Journals
Copyright
Copyright © 2010 by The Author(s)
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0961-6
Publisher site
See Article on Publisher Site

Abstract

The objective of this work is to investigate the feasibility of intense laser-beam propagation through optical fibers for temperature and species concentration measurements in gas-phase reacting flows using coherent anti-Stokes Raman scattering (CARS) spectroscopy. In particular, damage thresholds of fibers, nonlinear effects during beam propagation, and beam quality at the output of the fibers are studied for the propagation of nanosecond (ns) and picosecond (ps) laser beams. It is observed that ps pulses are better suited for fiber-based nonlinear optical spectroscopic techniques, which generally depend on laser irradiance rather than fluence. A ps fiber-coupled CARS system using multimode step-index fibers is developed. Temperature measurements using this system are demonstrated in an atmospheric pressure, near-adiabatic laboratory flame. Proof-of-concept measurements show significant promise for fiber-based CARS spectroscopy in harsh combustion environments. Furthermore, since ps-CARS spectroscopy allows the suppression of non-resonant background, this technique could be utilized for improving the sensitivity and accuracy of CARS thermometry in high-pressure hydrocarbon-fueled combustors.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off