Investigation of internal pressure gradients generated in electrokinetic flows with axial conductivity gradients

Investigation of internal pressure gradients generated in electrokinetic flows with axial... Field amplified sample stacking (FASS) is used to increase sample concentrations in electrokinetic flows. The technique uses conductivity gradients to establish a non-uniform electric field that accumulates ions within a conductivity gradient, and can be readily integrated with capillary electrophoresis. Conductivity gradients also cause gradients in near-wall electroosmotic flow velocities. These velocity gradients generate internal pressure gradients that drive secondary, dispersive flows. This dispersion leads to a significant reduction in the efficiency of sample stacking. This paper presents an experimental investigation of internally generated pressure gradients in FASS using micron-resolution particle image velocimetry (μPIV). We measure velocity fields of particles seeded into an electrokinetic FASS flow field in a glass microchannel with a single buffer–buffer interface. μPIV allows for the direct quantification of local, instantaneous pressure gradients by analyzing the curvature of velocity profiles. Measurements show internally generated pressure-driven velocities on the order of 1mm/s for a typical applied electric field of 100 V/cm and a conductivity ratio of 10. A one-dimensional (1D) analytical model for the temporal development of the internal pressure gradient generation is proposed which is useful in estimating general trends in flow dynamics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Investigation of internal pressure gradients generated in electrokinetic flows with axial conductivity gradients

Loading next page...
 
/lp/springer_journal/investigation-of-internal-pressure-gradients-generated-in-J0ha038hIX
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0366-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial