Investigation of interaction phenomena between crural fascia and muscles by using a three-dimensional numerical model

Investigation of interaction phenomena between crural fascia and muscles by using a... The focus of this work is the numerical modeling of the anterior compartment of the human leg with particular attention to crural fascia. Interaction phenomena between fascia and muscles are of clinical interest to explain some pathologies, as the compartment syndrome. A first step to enhance knowledge on this topic consists in the investigation of fascia biomechanical role and its interaction with muscles in physiological conditions. A three-dimensional finite element model of the anterior compartment is developed based on anatomical data, detailing the structural conformation of crural fascia, composed of three layers, and modeling the muscles as a unique structure. Different constitutive models are implemented to describe the mechanical response of tissues. Crural fascia is modeled as a hyperelastic fiber-reinforced material, while muscle tissue via a three-element Hill’s model. The numerical analysis of isotonic contraction of muscles is performed, allowing the evaluation of pressure induced within muscles and consequent stress and strain fields arising on the crural fascia. Numerical results are compared with experimental measurements of the compartment radial deformation and intracompartmental pressure during concentric contraction, to validate the model. The numerical model provides a suitable description of muscles contraction of the anterior compartment and the consequent mechanical interaction with the crural fascia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medical & Biological Engineering & Computing Springer Journals

Investigation of interaction phenomena between crural fascia and muscles by using a three-dimensional numerical model

Loading next page...
 
/lp/springer_journal/investigation-of-interaction-phenomena-between-crural-fascia-and-U4CStR0l1z
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by International Federation for Medical and Biological Engineering
Subject
Biomedicine; Human Physiology; Biomedical Engineering; Imaging / Radiology; Computer Applications
ISSN
0140-0118
eISSN
1741-0444
D.O.I.
10.1007/s11517-017-1615-0
Publisher site
See Article on Publisher Site

Abstract

The focus of this work is the numerical modeling of the anterior compartment of the human leg with particular attention to crural fascia. Interaction phenomena between fascia and muscles are of clinical interest to explain some pathologies, as the compartment syndrome. A first step to enhance knowledge on this topic consists in the investigation of fascia biomechanical role and its interaction with muscles in physiological conditions. A three-dimensional finite element model of the anterior compartment is developed based on anatomical data, detailing the structural conformation of crural fascia, composed of three layers, and modeling the muscles as a unique structure. Different constitutive models are implemented to describe the mechanical response of tissues. Crural fascia is modeled as a hyperelastic fiber-reinforced material, while muscle tissue via a three-element Hill’s model. The numerical analysis of isotonic contraction of muscles is performed, allowing the evaluation of pressure induced within muscles and consequent stress and strain fields arising on the crural fascia. Numerical results are compared with experimental measurements of the compartment radial deformation and intracompartmental pressure during concentric contraction, to validate the model. The numerical model provides a suitable description of muscles contraction of the anterior compartment and the consequent mechanical interaction with the crural fascia.

Journal

Medical & Biological Engineering & ComputingSpringer Journals

Published: Feb 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off