Investigation of electrical characteristics of memory cells based on self-forming conducting nanostructures in a form of the TiN-SiO2-W open sandwich structure

Investigation of electrical characteristics of memory cells based on self-forming conducting... The results of experimental investigations of electroforming and quasi-static current-voltage (I-V) characteristics of formed TiN-SiO2-W open sandwich structures in comparison to the Si-SiO2-W structures are presented. It is shown that similar memory and switching effects, which are associated with self-forming the conducting nanostructures on the surface of the open end of the dielectric film (silicon dioxide) about 20 nm thick, are observed in them. However, the features of the structures with the lower TiN electrode are the noticeably larger current, the lower threshold switching voltage from the low-conducting state into the high-conducting state, and a flatter I–V characteristic at voltages below the threshold one. These features can be explained by the decrease in the spreading resistance from the conducting structure, which is formed during electroforming, into the material of the lower electrode for titanium nitride compared to silicon (their resistivity values differ by a factor of 4) and the lower potential barrier at the TiN-SiO2 interface compared with the Si-SiO2 interface. The cell of energy-independent electrically reprogrammable memory with the TiN-SiO2-W structure possesses the better technical characteristics and manufacturability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Investigation of electrical characteristics of memory cells based on self-forming conducting nanostructures in a form of the TiN-SiO2-W open sandwich structure

Loading next page...
 
/lp/springer_journal/investigation-of-electrical-characteristics-of-memory-cells-based-on-2J0prLMSRq
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739713010034
Publisher site
See Article on Publisher Site

Abstract

The results of experimental investigations of electroforming and quasi-static current-voltage (I-V) characteristics of formed TiN-SiO2-W open sandwich structures in comparison to the Si-SiO2-W structures are presented. It is shown that similar memory and switching effects, which are associated with self-forming the conducting nanostructures on the surface of the open end of the dielectric film (silicon dioxide) about 20 nm thick, are observed in them. However, the features of the structures with the lower TiN electrode are the noticeably larger current, the lower threshold switching voltage from the low-conducting state into the high-conducting state, and a flatter I–V characteristic at voltages below the threshold one. These features can be explained by the decrease in the spreading resistance from the conducting structure, which is formed during electroforming, into the material of the lower electrode for titanium nitride compared to silicon (their resistivity values differ by a factor of 4) and the lower potential barrier at the TiN-SiO2 interface compared with the Si-SiO2 interface. The cell of energy-independent electrically reprogrammable memory with the TiN-SiO2-W structure possesses the better technical characteristics and manufacturability.

Journal

Russian MicroelectronicsSpringer Journals

Published: Mar 13, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial