Investigating the utility of the weather context for point of interest recommendations

Investigating the utility of the weather context for point of interest recommendations Point of interest (POI) recommender systems for location-based social networks, such as Foursquare or Yelp, have gained tremendous popularity in the past few years. Much work has been dedicated to improving recommendation services in such systems by integrating different features (e.g., time or geographic location) that are assumed to have an impact on people’s choices for POIs. Yet, little effort has been made to incorporate or even understand the impact of weather on user decisions regarding certain POIs. In this paper, we contribute to this area of research by presenting the novel results of a study that aims to recommend POIs based on weather data. To this end, we have expanded the state-of-the-art Rank-GeoFM POI recommender algorithm to include additional weather-related features such as temperature, cloud cover, humidity and precipitation intensity. We show that using weather data not only significantly improves the recommendation accuracy in comparison to the original method, but also outperforms its time-based variant. Furthermore, we investigate the magnitude of the impact of each feature on the recommendation quality. Our research clearly shows the need to study weather context in more detail in light of POI recommendation systems. This study is relevant for researchers working on recommender systems in general, but in particular for researchers and system engineers working on POI recommender systems in the tourism domain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Information Technology & Tourism Springer Journals

Investigating the utility of the weather context for point of interest recommendations

Loading next page...
 
/lp/springer_journal/investigating-the-utility-of-the-weather-context-for-point-of-interest-refztg7VLN
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Business and Management; IT in Business
ISSN
1098-3058
eISSN
1943-4294
D.O.I.
10.1007/s40558-017-0100-9
Publisher site
See Article on Publisher Site

Abstract

Point of interest (POI) recommender systems for location-based social networks, such as Foursquare or Yelp, have gained tremendous popularity in the past few years. Much work has been dedicated to improving recommendation services in such systems by integrating different features (e.g., time or geographic location) that are assumed to have an impact on people’s choices for POIs. Yet, little effort has been made to incorporate or even understand the impact of weather on user decisions regarding certain POIs. In this paper, we contribute to this area of research by presenting the novel results of a study that aims to recommend POIs based on weather data. To this end, we have expanded the state-of-the-art Rank-GeoFM POI recommender algorithm to include additional weather-related features such as temperature, cloud cover, humidity and precipitation intensity. We show that using weather data not only significantly improves the recommendation accuracy in comparison to the original method, but also outperforms its time-based variant. Furthermore, we investigate the magnitude of the impact of each feature on the recommendation quality. Our research clearly shows the need to study weather context in more detail in light of POI recommendation systems. This study is relevant for researchers working on recommender systems in general, but in particular for researchers and system engineers working on POI recommender systems in the tourism domain.

Journal

Information Technology & TourismSpringer Journals

Published: Jan 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off