Investigating the Performance of a Variation of Multiple Correspondence Analysis for Multiple Imputation in Categorical Data Sets

Investigating the Performance of a Variation of Multiple Correspondence Analysis for Multiple... Non-response in survey data, especially in multivariate categorical variables, is a common problem which often leads to invalid inferences and inefficient estimates. A regularized iterative multiple correspondence analysis (RIMCA) algorithm in single imputation (SI) has been suggested for the handling of missing categorical data in survey analysis. This paper proposes an adapted version of the SI algorithm for multiple imputation (MI). The SI and MI techniques are compared for both simulated and real questionnaire data. A comparison between RIMCA MI and Sequential Regression Multiple Imputation (SRMI) is shown to establish the success of the proposed MI procedure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Classification Springer Journals

Investigating the Performance of a Variation of Multiple Correspondence Analysis for Multiple Imputation in Categorical Data Sets

Loading next page...
 
/lp/springer_journal/investigating-the-performance-of-a-variation-of-multiple-GSQ3dN9Ik5
Publisher
Springer Journals
Copyright
Copyright © 2017 by Classification Society of North America
Subject
Statistics; Statistical Theory and Methods; Pattern Recognition; Bioinformatics; Signal,Image and Speech Processing; Psychometrics; Marketing
ISSN
0176-4268
eISSN
1432-1343
D.O.I.
10.1007/s00357-017-9238-6
Publisher site
See Article on Publisher Site

Abstract

Non-response in survey data, especially in multivariate categorical variables, is a common problem which often leads to invalid inferences and inefficient estimates. A regularized iterative multiple correspondence analysis (RIMCA) algorithm in single imputation (SI) has been suggested for the handling of missing categorical data in survey analysis. This paper proposes an adapted version of the SI algorithm for multiple imputation (MI). The SI and MI techniques are compared for both simulated and real questionnaire data. A comparison between RIMCA MI and Sequential Regression Multiple Imputation (SRMI) is shown to establish the success of the proposed MI procedure.

Journal

Journal of ClassificationSpringer Journals

Published: Oct 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off