Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis

Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis Humans can skillfully recognize actions from others’ body motion and make a judgment or response at once. Previous neuroimaging studies have mostly utilized diminished and brief human motion stimuli and indicated that human occipito-temporal cortex plays a critical role at biological motion recognition. It remains unclear to what extent that the areas related to human motion perception are involved in decoding basic movements. Because human movement naturally stems from the sequences of body posture, so we utilized the stimulus of real movements. Participants were presented four categories of human movements (jump, run, skip and walk) in a blocked fMRI experiment. Multi-voxel pattern analysis (MVPA) was adopted to assess whether different movements could be discriminated in four regions. We found that movement-specific information was represented in both human body-sensitive areas, extrastriate body area (EBA) and motion-sensitive areas, posterior superior temporal sulcus (pSTS) and human middle temporal complex (hMT+). Additionally, a further functional connectivity analysis using EBA as a seed was conducted and it suggested that EBA showed a task-modulated functional connectivity with multiple areas that were involved in the behavior perception and motor control. Human motion processing appeared to be completed in a distributed network. The occipito-temporal cortex may perform the initial processing of human motion information extracting, and then transform them to interconnected areas for a further utilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis

Loading next page...
 
/lp/springer_journal/investigating-the-neural-basis-of-basic-human-movement-perception-KPPF0RLiYl
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurology
ISSN
0014-4819
eISSN
1432-1106
D.O.I.
10.1007/s00221-018-5175-9
Publisher site
See Article on Publisher Site

Abstract

Humans can skillfully recognize actions from others’ body motion and make a judgment or response at once. Previous neuroimaging studies have mostly utilized diminished and brief human motion stimuli and indicated that human occipito-temporal cortex plays a critical role at biological motion recognition. It remains unclear to what extent that the areas related to human motion perception are involved in decoding basic movements. Because human movement naturally stems from the sequences of body posture, so we utilized the stimulus of real movements. Participants were presented four categories of human movements (jump, run, skip and walk) in a blocked fMRI experiment. Multi-voxel pattern analysis (MVPA) was adopted to assess whether different movements could be discriminated in four regions. We found that movement-specific information was represented in both human body-sensitive areas, extrastriate body area (EBA) and motion-sensitive areas, posterior superior temporal sulcus (pSTS) and human middle temporal complex (hMT+). Additionally, a further functional connectivity analysis using EBA as a seed was conducted and it suggested that EBA showed a task-modulated functional connectivity with multiple areas that were involved in the behavior perception and motor control. Human motion processing appeared to be completed in a distributed network. The occipito-temporal cortex may perform the initial processing of human motion information extracting, and then transform them to interconnected areas for a further utilization.

Journal

Experimental Brain ResearchSpringer Journals

Published: Jan 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off