Investigating the effect of mixed alkaline electrolyte (NaOH+KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM)

Investigating the effect of mixed alkaline electrolyte (NaOH+KOH) on the improvement of machining... Since the microchannels have a vital role in microelectromechanical systems (MEMS), microfluidic and lab-on-a-chip devices, the surface quality, material removal rate (MRR), and geometrical accuracy of microchannels should be controlled well. The electrolyte nature is one of the dominant and important factors that affect the accuracy and performance of electrochemical discharge machining (ECDM). In this contribution, two alkaline electrolytes, NaOH and KOH, were mixed in equal proportion. It was observed that using NaOH + KOH mixed electrolyte at 15 and 25 wt% concentrations provides more electrical conductivity than KOH and NaOH separately at the same concentrations. It results in the fabrication of deeper microchannel with sharper sidewalls compared to KOH and NaOH, while its surface quality is preserved as well. Also, using 25, 30, and 35 wt% mixed electrolyte, due to higher viscosity compared to KOH, improved the surface quality of channels up to 35, 42, and 36%, respectively. Analyzing the waveform of the current response of various electrolytes showed that the microchannel with poor MRR and surface quality will be fabricated in the presence of salt electrolytes due to the generation of very low energy and unstable electrochemical sparks. In another part of the experiments, scanning electron microscopy (SEM) images and energy-dispersive X-ray (EDX) analysis of the tungsten carbide (WC) tool used in different electrolytes showed that the tools used in NaOH and NaNO3 had more severe wear compared to KOH and mixed electrolyte. Also, at the applied voltages of 50 V, the tool erosion was more serious compared to tool erosion at 35 V. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Investigating the effect of mixed alkaline electrolyte (NaOH+KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM)

Loading next page...
 
/lp/springer_journal/investigating-the-effect-of-mixed-alkaline-electrolyte-naoh-koh-on-the-ASq01JKph5
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1210-4
Publisher site
See Article on Publisher Site

Abstract

Since the microchannels have a vital role in microelectromechanical systems (MEMS), microfluidic and lab-on-a-chip devices, the surface quality, material removal rate (MRR), and geometrical accuracy of microchannels should be controlled well. The electrolyte nature is one of the dominant and important factors that affect the accuracy and performance of electrochemical discharge machining (ECDM). In this contribution, two alkaline electrolytes, NaOH and KOH, were mixed in equal proportion. It was observed that using NaOH + KOH mixed electrolyte at 15 and 25 wt% concentrations provides more electrical conductivity than KOH and NaOH separately at the same concentrations. It results in the fabrication of deeper microchannel with sharper sidewalls compared to KOH and NaOH, while its surface quality is preserved as well. Also, using 25, 30, and 35 wt% mixed electrolyte, due to higher viscosity compared to KOH, improved the surface quality of channels up to 35, 42, and 36%, respectively. Analyzing the waveform of the current response of various electrolytes showed that the microchannel with poor MRR and surface quality will be fabricated in the presence of salt electrolytes due to the generation of very low energy and unstable electrochemical sparks. In another part of the experiments, scanning electron microscopy (SEM) images and energy-dispersive X-ray (EDX) analysis of the tungsten carbide (WC) tool used in different electrolytes showed that the tools used in NaOH and NaNO3 had more severe wear compared to KOH and mixed electrolyte. Also, at the applied voltages of 50 V, the tool erosion was more serious compared to tool erosion at 35 V.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Oct 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off