Investigating monsoon and post-monsoon variabilities of bacterioplankton communities in a mangrove ecosystem

Investigating monsoon and post-monsoon variabilities of bacterioplankton communities in a... In mangrove environments, bacterioplankton communities constitute an important component of aquatic biota and play a major role in ecosystem processes. Variability of bacterioplankton communities from Sundarbans mangrove, located in the Indian subcontinent in South Asia and sits on the apex of Bay of Bengal, was investigated over monsoon and post-monsoon seasons. The study was undertaken in two stations in Sundarbans using 16S rRNA clone library and Illumina MiSeq approaches with focus on the functionally important members that participate in coastal biogeochemical cycling. Out of 544 sequenced clones, Proteobacteria dominated the study area (373 sequences) with persistence of two major classes, namely, Gammaproteobacteria and Alphaproteobacteria across both monsoon and post-monsoon seasons in both stations. Several sequences belonging to Sphingomonadales, Chromatiales, Alteromonadales, Oceanospirillales, and Bacteroidetes were encountered that are known to play important roles in coastal carbon cycling. Some sequences showed identity with published uncultured Planctomycetes and Chloroflexi highlighting their role in nitrogen cycling. The detection of two novel clades highlighted the existence of indigenous group of bacterioplankton that may play important roles in this ecosystem. The eubacterial V3–V4 region from environmental DNA extracted from the above two stations, followed by sequencing in Illumina MiSeq system, was also targeted in the study. A congruency between the clone library and Illumina approaches was observed. Strong variability in bacterioplankton community structure was encountered at a seasonal scale in link with precipitation. Drastic increase in sediment associated bacteria such as members of Firmicutes and Desulfovibrio was found in monsoon hinting possible resuspension of sediment-dwelling bacteria into the overlying water column. Principal component analysis (PCA) revealed dissolved ammonium and dissolved nitrate to account for maximum variation observed in the bacterioplankton community structure. Overall, the study showed that a strong interplay exists between environmental parameters and observed variability in bacterioplankton communities as a result of precipitation which can ultimately influence processes and rates linked to coastal biogeochemical cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Investigating monsoon and post-monsoon variabilities of bacterioplankton communities in a mangrove ecosystem

Loading next page...
 
/lp/springer_journal/investigating-monsoon-and-post-monsoon-variabilities-of-Kq0oKV4KGj
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0852-y
Publisher site
See Article on Publisher Site

Abstract

In mangrove environments, bacterioplankton communities constitute an important component of aquatic biota and play a major role in ecosystem processes. Variability of bacterioplankton communities from Sundarbans mangrove, located in the Indian subcontinent in South Asia and sits on the apex of Bay of Bengal, was investigated over monsoon and post-monsoon seasons. The study was undertaken in two stations in Sundarbans using 16S rRNA clone library and Illumina MiSeq approaches with focus on the functionally important members that participate in coastal biogeochemical cycling. Out of 544 sequenced clones, Proteobacteria dominated the study area (373 sequences) with persistence of two major classes, namely, Gammaproteobacteria and Alphaproteobacteria across both monsoon and post-monsoon seasons in both stations. Several sequences belonging to Sphingomonadales, Chromatiales, Alteromonadales, Oceanospirillales, and Bacteroidetes were encountered that are known to play important roles in coastal carbon cycling. Some sequences showed identity with published uncultured Planctomycetes and Chloroflexi highlighting their role in nitrogen cycling. The detection of two novel clades highlighted the existence of indigenous group of bacterioplankton that may play important roles in this ecosystem. The eubacterial V3–V4 region from environmental DNA extracted from the above two stations, followed by sequencing in Illumina MiSeq system, was also targeted in the study. A congruency between the clone library and Illumina approaches was observed. Strong variability in bacterioplankton community structure was encountered at a seasonal scale in link with precipitation. Drastic increase in sediment associated bacteria such as members of Firmicutes and Desulfovibrio was found in monsoon hinting possible resuspension of sediment-dwelling bacteria into the overlying water column. Principal component analysis (PCA) revealed dissolved ammonium and dissolved nitrate to account for maximum variation observed in the bacterioplankton community structure. Overall, the study showed that a strong interplay exists between environmental parameters and observed variability in bacterioplankton communities as a result of precipitation which can ultimately influence processes and rates linked to coastal biogeochemical cycles.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off