Invasion genomics: genotyping-by-sequencing approach reveals regional genetic structure and signatures of temporal selection in an introduced mud crab

Invasion genomics: genotyping-by-sequencing approach reveals regional genetic structure and... Introduced species can cause large impacts on communities and ecosystems. To prevent invasions and the impacts of invasions, a better understanding of species-specific invasion routes, establishment processes, demographic histories and range expansions is needed. Such valuable biological information can be obtained using population genomics approaches that allow fast and simultaneous screening of thousands of loci and SNP markers without prior knowledge of the genome of studied species. As a result, invasion genomics has the potential to reveal previously undetected population relationships, invasion routes and evolutionary patterns. Here, we characterized the genetic diversity, structure, temporal stability and putative footprints of selection in introduced Baltic Sea populations of the mud crab Rhithropanopeus harrisii using restriction-site associated DNA (RAD) sequencing. Similar to earlier mtDNA reports, analysis of 1013 SNPs revealed strong differentiation between the native and introduced populations. At a regional scale, clear evidence of population structuring was detected between Finnish and Estonian samples indicating that R. harrisii does not form a single panmictic population in the Baltic Sea. Clustering of samples according to the age groups (juvenile and adult) instead of geographical location within the Archipelago Sea revealed the presence of significant temporal variation at small spatial scale. Finally, we identified a number of outlier loci under temporal divergent selection between cohorts suggesting that contemporary selection in newly established areas may be stronger than selection associated with spatial heterogeneity within the Baltic Sea. These results demonstrate the utility of next-generation sequencing to increase understanding of the population diversity and structuring, and highlight the importance of temporal genetic analysis when dissecting fine-scale genetic structure for introduced marine species with high reproductive potential. Marine Biology Springer Journals

Invasion genomics: genotyping-by-sequencing approach reveals regional genetic structure and signatures of temporal selection in an introduced mud crab

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Environment; Marine & Freshwater Sciences; Freshwater & Marine Ecology; Oceanography; Microbiology; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial