Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states

Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states Milz and Strunz (J Phys A 48:035306, 2015) recently studied the probabilities that two-qubit and qubit–qutrit states, randomly generated with respect to Hilbert–Schmidt (Euclidean/flat) measure, are separable. They concluded that in both cases, the separability probabilities (apparently exactly $$\frac{8}{33}$$ 8 33 in the two-qubit scenario) hold constant over the Bloch radii (r) of the single-qubit subsystems, jumping to 1 at the pure state boundaries ( $$r=1$$ r = 1 ). Here, firstly, we present evidence that in the qubit–qutrit case, the separability probability is uniformly distributed, as well, over the generalized Bloch radius (R) of the qutrit subsystem. While the qubit (standard) Bloch vector is positioned in three-dimensional space, the qutrit generalized Bloch vector lives in eight-dimensional space. The radii variables r and R themselves are the lengths/norms (being square roots of quadratic Casimir invariants) of these (“coherence”) vectors. Additionally, we find that not only are the qubit–qutrit separability probabilities invariant over the quadratic Casimir invariant of the qutrit subsystem, but apparently also over the cubic one—and similarly the case, more generally, with the use of random induced measure. We also investigate two-qutrit ( $$3 \times 3$$ 3 × 3 ) and qubit–qudit ( $$2 \times 4$$ 2 × 4 ) systems—with seemingly analogous positive partial transpose-probability invariances holding over what has been termed by Altafini the partial Casimir invariants of these systems. Quantum Information Processing Springer Journals

Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial