Introduction of vanadium species in β zeolite by solid-state reaction: spectroscopic study of V speciation and molecular mechanism

Introduction of vanadium species in β zeolite by solid-state reaction: spectroscopic study of V... V-containing β zeolites were prepared by solid-state reaction between V2O5 and β zeolite. The zeolite structure was analysed by XRD and N2 physisorption. The V speciation was studied by chemical analysis and different spectroscopies (FT-IR, 27Al-NMR, UV-Vis, EPR, photoluminescence). After calcination of V2O5-β zeolite mechanical mixtures at 500°C, three kinds of V species were identified: (i) oligomeric vanadates with octahedral V5+ easily removed by treatment with NH4OAc, (ii) isolated vanadyl (V=O)2+ ions in axially distorted octahedral or square pyramidal environment, interacting with framework and/or extraframework Al nuclei and (iii) isolated V5+ in tetrahedral and octahedral environments, localized in framework defect sites. The amount of the latter species is higher when water vapor is present during calcination and when parent β zeolite contains a high concentration of defect sites generated by a strong acid pretreatment. Isolated V5+ are easily reduced to tetrahedral V4+ or to square pyramidal (V=O)2+. Possible models of the mechanism of formation of V species by solid-state reaction and further reduction are proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Introduction of vanadium species in β zeolite by solid-state reaction: spectroscopic study of V speciation and molecular mechanism

Loading next page...
 
/lp/springer_journal/introduction-of-vanadium-species-in-zeolite-by-solid-state-reaction-HbazB49qk0
Publisher
Springer Journals
Copyright
Copyright © 2007 by VSP
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856707782169327
Publisher site
See Article on Publisher Site

Abstract

V-containing β zeolites were prepared by solid-state reaction between V2O5 and β zeolite. The zeolite structure was analysed by XRD and N2 physisorption. The V speciation was studied by chemical analysis and different spectroscopies (FT-IR, 27Al-NMR, UV-Vis, EPR, photoluminescence). After calcination of V2O5-β zeolite mechanical mixtures at 500°C, three kinds of V species were identified: (i) oligomeric vanadates with octahedral V5+ easily removed by treatment with NH4OAc, (ii) isolated vanadyl (V=O)2+ ions in axially distorted octahedral or square pyramidal environment, interacting with framework and/or extraframework Al nuclei and (iii) isolated V5+ in tetrahedral and octahedral environments, localized in framework defect sites. The amount of the latter species is higher when water vapor is present during calcination and when parent β zeolite contains a high concentration of defect sites generated by a strong acid pretreatment. Isolated V5+ are easily reduced to tetrahedral V4+ or to square pyramidal (V=O)2+. Possible models of the mechanism of formation of V species by solid-state reaction and further reduction are proposed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off