Intraday Return Volatility Process: Evidence from NASDAQ Stocks

Intraday Return Volatility Process: Evidence from NASDAQ Stocks This paper presents a comprehensive analysis of the distributional and time-series properties of intraday returns. The purpose is to determine whether a GARCH model that allows for time varying variance in a process can adequately represent intraday return volatility. Our primary data set consists of 5-minute returns, trading volumes, and bid-ask spreads during the period January 1, 1999 through March 31, 1999, for a subset of thirty stocks from the NASDAQ 100 Index. Our results indicate that the GARCH(1,1) model best describes the volatility of intraday returns. Current volatility can be explained by past volatility that tends to persist over time. These results are consistent with those of Akgiray (1989) who estimates volatility using the various ARCH and GARCH specifications and finds the GARCH(1,1) model performs the best. We add volume as an additional explanatory variable in the GARCH model to examine if volume can capture the GARCH effects. Consistent with results of Najand and Yung (1991) and Foster (1995) and contrary to those of Lamoureux and Lastrapes (1990), our results show that the persistence in volatility remains in intraday return series even after volume is included in the model as an explanatory variable. We then substitute bid-ask spread for volume in the conditional volatility equation to examine if the latter can capture the GARCH effects. The results show that the GARCH effects remain strongly significant for many of the securities after the introduction of bid-ask spread. Consistent with results of Antoniou, Homes and Priestley (1998), intraday returns also exhibit significant asymmetric responses of volatility to flow of information into the market. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Intraday Return Volatility Process: Evidence from NASDAQ Stocks

Loading next page...
 
/lp/springer_journal/intraday-return-volatility-process-evidence-from-nasdaq-stocks-zSjZ7b4QV9
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1023/A:1020683012149
Publisher site
See Article on Publisher Site

Abstract

This paper presents a comprehensive analysis of the distributional and time-series properties of intraday returns. The purpose is to determine whether a GARCH model that allows for time varying variance in a process can adequately represent intraday return volatility. Our primary data set consists of 5-minute returns, trading volumes, and bid-ask spreads during the period January 1, 1999 through March 31, 1999, for a subset of thirty stocks from the NASDAQ 100 Index. Our results indicate that the GARCH(1,1) model best describes the volatility of intraday returns. Current volatility can be explained by past volatility that tends to persist over time. These results are consistent with those of Akgiray (1989) who estimates volatility using the various ARCH and GARCH specifications and finds the GARCH(1,1) model performs the best. We add volume as an additional explanatory variable in the GARCH model to examine if volume can capture the GARCH effects. Consistent with results of Najand and Yung (1991) and Foster (1995) and contrary to those of Lamoureux and Lastrapes (1990), our results show that the persistence in volatility remains in intraday return series even after volume is included in the model as an explanatory variable. We then substitute bid-ask spread for volume in the conditional volatility equation to examine if the latter can capture the GARCH effects. The results show that the GARCH effects remain strongly significant for many of the securities after the introduction of bid-ask spread. Consistent with results of Antoniou, Homes and Priestley (1998), intraday returns also exhibit significant asymmetric responses of volatility to flow of information into the market.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off