Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression

Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression The plant plasma membrane barrier can express aquaporins (PIP1 and PIP2) that show two intriguing aspects: (1) the potential of modulating whole membrane water permeability by co-expression of both types, which have recently been distinguished for showing a different capacity to reach the plasma membrane; and (2) the faculty to reduce water permeation through the pore after cytosolic acidification, as a consequence of a gating process. Our working hypothesis is that these two key features might enhance plasticity of the membrane water transport capacity if they jointly trigger any cooperative interaction. In previous work, we proved by biophysical approaches that the plasma membrane of the halophyte Beta vulgaris storage root presents highly permeable aquaporins that can be shut down by acidic pH. Root Beta vulgaris PIPs were therefore subcloned and expressed in Xenopus oocytes. Co-expression of BvPIP1;1 and BvPIP2;2 not only enhances oocyte plasma membrane water permeability synergistically but also reinforces pH inhibitory response from partial to complete shut down after cytosolic pH acidification. This pH dependent behavior shows that PIP1–PIP2 co-expression accounts for a different pH sensitivity in comparison with PIP2 expression. These results prove for the first time that PIP co-expression modulates the membrane water permeability through a pH regulatory response, enhancing in this way membrane versatility to adjust its water transfer capacity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression

Loading next page...
 
/lp/springer_journal/intracellular-ph-sensing-is-altered-by-plasma-membrane-pip-aquaporin-0CnMYrIs77
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9658-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial