Intracellular morphological changes in Staphylococcus aureus induced by treatment with sodium hypochlorite

Intracellular morphological changes in Staphylococcus aureus induced by treatment with sodium... Sodium hypochlorite (NaOCl) is commonly used as a disinfectant; however, its bactericidal mechanism has not yet been clarified. In the present study, the bactericidal mechanism of NaOCl was examined using microscopy and gel electrophoresis techniques with Staphylococcus aureus strain 209P. S. aureus cells treated with 500 and 1000 ppm NaOCl for 5 and 15 min were observed by SEM and TEM. SEM images of the bacterial cells treated with NaOCl showed an irregular surface, with cells being partially invaginated. TEM images of the bacterial cells showed cytoplasmic alterations, accompanied by a partially irregular cellular surface. Under a fluorescence microscope, we clearly observed fluorescence quenching in the 1000 ppm NaOCl-treated cells. Based on these observations, which indicated that NaOCl damaged chromosomal DNA, we next extracted chromosomal DNA from bacterial cells treated with NaOCl and performed agarose gel electrophoresis. Chromosomal DNA was absent in the DNA sample from the bacterial cells treated with 500 ppm NaOCl. From these biochemical results, it was strongly suggested that NaOCl degrades the chromosomal DNA of S. aureus. We consider that the morphological changes in the cytoplasm induced by NaOCl may be related to NaOCl-induced degradation of S. aureus chromosomal DNA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medical Molecular Morphology Springer Journals

Intracellular morphological changes in Staphylococcus aureus induced by treatment with sodium hypochlorite

Loading next page...
 
/lp/springer_journal/intracellular-morphological-changes-in-staphylococcus-aureus-induced-R4zNBQMBq0
Publisher
Springer Japan
Copyright
Copyright © 2017 by The Japanese Society for Clinical Molecular Morphology
Subject
Medicine & Public Health; Pathology; Anatomy; Molecular Medicine
ISSN
1860-1480
eISSN
1860-1499
D.O.I.
10.1007/s00795-017-0159-6
Publisher site
See Article on Publisher Site

Abstract

Sodium hypochlorite (NaOCl) is commonly used as a disinfectant; however, its bactericidal mechanism has not yet been clarified. In the present study, the bactericidal mechanism of NaOCl was examined using microscopy and gel electrophoresis techniques with Staphylococcus aureus strain 209P. S. aureus cells treated with 500 and 1000 ppm NaOCl for 5 and 15 min were observed by SEM and TEM. SEM images of the bacterial cells treated with NaOCl showed an irregular surface, with cells being partially invaginated. TEM images of the bacterial cells showed cytoplasmic alterations, accompanied by a partially irregular cellular surface. Under a fluorescence microscope, we clearly observed fluorescence quenching in the 1000 ppm NaOCl-treated cells. Based on these observations, which indicated that NaOCl damaged chromosomal DNA, we next extracted chromosomal DNA from bacterial cells treated with NaOCl and performed agarose gel electrophoresis. Chromosomal DNA was absent in the DNA sample from the bacterial cells treated with 500 ppm NaOCl. From these biochemical results, it was strongly suggested that NaOCl degrades the chromosomal DNA of S. aureus. We consider that the morphological changes in the cytoplasm induced by NaOCl may be related to NaOCl-induced degradation of S. aureus chromosomal DNA.

Journal

Medical Molecular MorphologySpringer Journals

Published: May 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off