Intracellular distribution of cowpea mosaic virus movement protein as visualised by green fluorescent protein fusions

Intracellular distribution of cowpea mosaic virus movement protein as visualised by green... Cowpea mosaic virus (CPMV) derivatives expressing movement protein (MP) green fluorescent protein (GFP) fusions (MP:GFP) were used to study the intracellular targeting and localization of the MP in cowpea protoplasts and plants. In protoplasts, a virus coding for a wild type MP:GFP (MPfGFP) induced the formation of fluorescent tubular structures, which shows that subcellular targeting and tubule formation are not affected by fusion of GFP to the C-terminus of the MP. In plants, MPfGFP infections were mostly confined to single epidermal cells and failed to achieve a systemic infection, probably because the fusion of GFP to the MP interfered with MP-virion interaction. MP:GFP mainly accumulated in fluorescent spots in the cell wall of epidermal cells of inoculated leaves, which may represent short tubular structures in modified plasmodesmata. At the cuticle-side of epidermal cells tubular structures were detected indicating that tubule formation in plants, as in protoplasts, does not require the presence of functional plasmodesmata. Furthermore, results were obtained which indicate that CPMV MP:GFP is able to traffic from cell-to-cell by itself. The possible significance of this finding is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Intracellular distribution of cowpea mosaic virus movement protein as visualised by green fluorescent protein fusions

Loading next page...
 
/lp/springer_journal/intracellular-distribution-of-cowpea-mosaic-virus-movement-protein-as-tlxKBSrV0S
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag/Wien
Subject
LifeSciences
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-003-0180-z
Publisher site
See Article on Publisher Site

Abstract

Cowpea mosaic virus (CPMV) derivatives expressing movement protein (MP) green fluorescent protein (GFP) fusions (MP:GFP) were used to study the intracellular targeting and localization of the MP in cowpea protoplasts and plants. In protoplasts, a virus coding for a wild type MP:GFP (MPfGFP) induced the formation of fluorescent tubular structures, which shows that subcellular targeting and tubule formation are not affected by fusion of GFP to the C-terminus of the MP. In plants, MPfGFP infections were mostly confined to single epidermal cells and failed to achieve a systemic infection, probably because the fusion of GFP to the MP interfered with MP-virion interaction. MP:GFP mainly accumulated in fluorescent spots in the cell wall of epidermal cells of inoculated leaves, which may represent short tubular structures in modified plasmodesmata. At the cuticle-side of epidermal cells tubular structures were detected indicating that tubule formation in plants, as in protoplasts, does not require the presence of functional plasmodesmata. Furthermore, results were obtained which indicate that CPMV MP:GFP is able to traffic from cell-to-cell by itself. The possible significance of this finding is discussed.

Journal

Archives of VirologySpringer Journals

Published: Nov 1, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off