Intracellular Delivery of Trehalose into Mammalian Cells by Electropermeabilization

Intracellular Delivery of Trehalose into Mammalian Cells by Electropermeabilization The disaccharide trehalose is increasingly being used as a very efficient stabilizer of cells, membranes and macromolecules during cryo- and lyoconservation. Although extracellular trehalose can reduce cryo- and lyodamage to mammalian cells, the sugar is required on both sides of the plasma membrane for maximum protection efficiency. In the present study, mouse myeloma cells were loaded with the disaccharide by means of reversible electropermeabilization in isotonic trehalose-substituted medium, which contained 290 mM trehalose as the major solute. By using the membrane-impermeable fluorescent dye propidium iodide as the reporter molecule, optimum electropulsing conditions were found, at which most permeabilized cells survived and recovered (i.e., resealed) their original membrane integrity within a few minutes after electric treatment. Microscopic examination during the resealing phase revealed that electropulsed cells shrank gradually to about 60% of their original volume. The kinetics of the dye uptake and the volumetric response of cells to electropulsing were analyzed using a theoretical model that relates the observed cell volume changes to the solute transport across the transiently permeabilized cell membrane. From the best fit of the model to the experimental data, the intracellular trehalose concentration in electropulsed cells was estimated to be about 100 mM. This loading efficiency compares favorably to other methods currently used for intracellular trehalose delivery. The results presented here point toward application of the electropermeabilization technique for loading cells with membrane-impermeable bioprotectants, with far-reaching implications for cryo- and lyopreservation of rare and valuable mammalian cells and tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Intracellular Delivery of Trehalose into Mammalian Cells by Electropermeabilization

Loading next page...
 
/lp/springer_journal/intracellular-delivery-of-trehalose-into-mammalian-cells-by-c8kcFlD3qz
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1003-y
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial