# Interval convex quadratic programming problems in a general form

Interval convex quadratic programming problems in a general form This paper addresses the problem of computing the minimal and the maximal optimal value of a convex quadratic programming (CQP) problem when the coefficients are subject to perturbations in given intervals. Contrary to the previous results concerning on some special forms of CQP only, we present a unified method to deal with interval CQP problems. The problem can be formulated by using equation, inequalities or both, and by using sign-restricted variables or sign-unrestricted variables or both. We propose simple formulas for calculating the minimal and maximal optimal values. Due to NP-hardness of the problem, the formulas are exponential with respect to some characteristics. On the other hand, there are large sub-classes of problems that are polynomially solvable. For the general intractable case we propose an approximation algorithm. We illustrate our approach by a geometric problem of determining the distance of uncertain polytopes. Eventually, we extend our results to quadratically constrained CQP, and state some open problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Central European Journal of Operations Research Springer Journals

# Interval convex quadratic programming problems in a general form

, Volume 25 (3) – Jun 21, 2016
13 pages

Publisher
Springer Berlin Heidelberg
Subject
Business and Management; Operations Research/Decision Theory
ISSN
1435-246X
eISSN
1613-9178
D.O.I.
10.1007/s10100-016-0445-8
Publisher site
See Article on Publisher Site

### Abstract

This paper addresses the problem of computing the minimal and the maximal optimal value of a convex quadratic programming (CQP) problem when the coefficients are subject to perturbations in given intervals. Contrary to the previous results concerning on some special forms of CQP only, we present a unified method to deal with interval CQP problems. The problem can be formulated by using equation, inequalities or both, and by using sign-restricted variables or sign-unrestricted variables or both. We propose simple formulas for calculating the minimal and maximal optimal values. Due to NP-hardness of the problem, the formulas are exponential with respect to some characteristics. On the other hand, there are large sub-classes of problems that are polynomially solvable. For the general intractable case we propose an approximation algorithm. We illustrate our approach by a geometric problem of determining the distance of uncertain polytopes. Eventually, we extend our results to quadratically constrained CQP, and state some open problems.

### Journal

Central European Journal of Operations ResearchSpringer Journals

Published: Jun 21, 2016

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations