Interpreting Soil Electrical Conductivity and Terrain Attribute Variability with Soil Surveys

Interpreting Soil Electrical Conductivity and Terrain Attribute Variability with Soil Surveys Utilizing soil electrical conductivity (EC) measurements and terrain attributes for precision management will require secondary soil information for adequate interpretation. The objective of this study was to determine whether readily available second-order soil surveys were of adequate quality to aid with interpreting soil EC and terrain data. For three locations in Kentucky, USA, first-order soil surveys were created, second-order surveys reports were obtained, elevation was measured and used to calculate terrain attributes (slope, aspect, plan curvature, profile curvature), and bulk soil electrical conductivity was measured. Three analytical methods (an ordinary least squares analysis and two random field analyses), visual map assessment, and examination of least-squares means were used to assess the relationships between soil EC measurements, terrain attributes and first- and second-order soil surveys. The OLS and random field analyses were problematic. However, the ranking of the OLS F-statistics appeared to reflect the general relationship between landscape variables and first-order soil surveys. The landscape variables related particularly well with soil properties that had been impacted by past soil erosion. Unfortunately, however, second-order soil surveys in this study were not created at suitable scales to adequately interpret EC and terrain data regarding erosion history or other attributes. While these surveys may provide some useful information, field measurements, sampling, and observations will likely be required to develop high quality interpretations of soil EC and terrain attribute data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Interpreting Soil Electrical Conductivity and Terrain Attribute Variability with Soil Surveys

Loading next page...
 
/lp/springer_journal/interpreting-soil-electrical-conductivity-and-terrain-attribute-D2YpU5oY4X
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-004-0684-x
Publisher site
See Article on Publisher Site

Abstract

Utilizing soil electrical conductivity (EC) measurements and terrain attributes for precision management will require secondary soil information for adequate interpretation. The objective of this study was to determine whether readily available second-order soil surveys were of adequate quality to aid with interpreting soil EC and terrain data. For three locations in Kentucky, USA, first-order soil surveys were created, second-order surveys reports were obtained, elevation was measured and used to calculate terrain attributes (slope, aspect, plan curvature, profile curvature), and bulk soil electrical conductivity was measured. Three analytical methods (an ordinary least squares analysis and two random field analyses), visual map assessment, and examination of least-squares means were used to assess the relationships between soil EC measurements, terrain attributes and first- and second-order soil surveys. The OLS and random field analyses were problematic. However, the ranking of the OLS F-statistics appeared to reflect the general relationship between landscape variables and first-order soil surveys. The landscape variables related particularly well with soil properties that had been impacted by past soil erosion. Unfortunately, however, second-order soil surveys in this study were not created at suitable scales to adequately interpret EC and terrain data regarding erosion history or other attributes. While these surveys may provide some useful information, field measurements, sampling, and observations will likely be required to develop high quality interpretations of soil EC and terrain attribute data.

Journal

Precision AgricultureSpringer Journals

Published: Dec 28, 2004

References

  • Improving the kriging of soil variables using slope gradient as external drift
    Bourennane, H.; King, D.; Chery, P.; Bruand, A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off