Interpolating Hodge–Tate and de Rham periods

Interpolating Hodge–Tate and de Rham periods We study the interpolation of Hodge–Tate and de Rham periods over rigid analytic families of Galois representations. Given a Galois representation on a coherent locally free sheaf over a reduced rigid space and a bounded range of weights, we obtain a stratification of this space by locally closed subvarieties where the Hodge–Tate and bounded de Rham periods (within this range) as well as 1-cocycles form locally free sheaves. We also prove strong vanishing results for higher cohomology. Together, these results give a simultaneous generalization of results of Sen, Kisin, and Berger–Colmez. The main result has been applied by Varma in her proof of geometricity of Harris–Lan–Taylor–Thorne Galois representations as well as in several works of Ding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research in the Mathematical Sciences Springer Journals

Interpolating Hodge–Tate and de Rham periods

Loading next page...
 
/lp/springer_journal/interpolating-hodge-tate-and-de-rham-periods-1ClgPFfzyV
Publisher
Springer Journals
Copyright
Copyright © 2018 by SpringerNature
Subject
Mathematics; Mathematics, general; Applications of Mathematics; Computational Mathematics and Numerical Analysis
eISSN
2197-9847
D.O.I.
10.1007/s40687-018-0135-3
Publisher site
See Article on Publisher Site

Abstract

We study the interpolation of Hodge–Tate and de Rham periods over rigid analytic families of Galois representations. Given a Galois representation on a coherent locally free sheaf over a reduced rigid space and a bounded range of weights, we obtain a stratification of this space by locally closed subvarieties where the Hodge–Tate and bounded de Rham periods (within this range) as well as 1-cocycles form locally free sheaves. We also prove strong vanishing results for higher cohomology. Together, these results give a simultaneous generalization of results of Sen, Kisin, and Berger–Colmez. The main result has been applied by Varma in her proof of geometricity of Harris–Lan–Taylor–Thorne Galois representations as well as in several works of Ding.

Journal

Research in the Mathematical SciencesSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off