Internal-getter formation in nitrogen-doped dislocation-free silicon wafers

Internal-getter formation in nitrogen-doped dislocation-free silicon wafers An experimental study is reported concerning the formation of defects in nitrogen-doped dislocation-free silicon wafers under a multistage heat treatment to produce an internal getter, the first stage being rapid thermal annealing (RTA) under different conditions. The experiments are conducted on p-Si(100) wafers of diameter 200 mm with an oxygen content of (6−7) × 1017 cm−3 and a doping level of 1.6 × 1014 cm−3, the resistivity being 10–12 ω cm. The processed wafers are examined by optical microscopy and transmission electron microscopy. With normal conditions of RTA (argon, 1250°C, 20 s), the process is found to be incapable of creating a defect-free subsurface layer of adequate thickness, though it is able to provide the desired system of defects in the bulk. The aim is achieved by changing to sequential RTA in oxygen and argon as the first stage. The reasons for the results are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Internal-getter formation in nitrogen-doped dislocation-free silicon wafers

Loading next page...
 
/lp/springer_journal/internal-getter-formation-in-nitrogen-doped-dislocation-free-silicon-Vel97F9Y6r
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739711080166
Publisher site
See Article on Publisher Site

Abstract

An experimental study is reported concerning the formation of defects in nitrogen-doped dislocation-free silicon wafers under a multistage heat treatment to produce an internal getter, the first stage being rapid thermal annealing (RTA) under different conditions. The experiments are conducted on p-Si(100) wafers of diameter 200 mm with an oxygen content of (6−7) × 1017 cm−3 and a doping level of 1.6 × 1014 cm−3, the resistivity being 10–12 ω cm. The processed wafers are examined by optical microscopy and transmission electron microscopy. With normal conditions of RTA (argon, 1250°C, 20 s), the process is found to be incapable of creating a defect-free subsurface layer of adequate thickness, though it is able to provide the desired system of defects in the bulk. The aim is achieved by changing to sequential RTA in oxygen and argon as the first stage. The reasons for the results are presented.

Journal

Russian MicroelectronicsSpringer Journals

Published: Dec 9, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off