Interindividual variation in epigenomic phenomena in humans

Interindividual variation in epigenomic phenomena in humans Our knowledge of regulatory mechanisms of gene expression and other chromosomal processes related to DNA methylation and chromatin state is continuing to grow at a rapid pace. Understanding how these epigenomic phenomena vary between individuals will have an impact on understanding their broader role in determining variation in gene expression and biochemical, physiological, and behavioural phenotypes. In this review we survey recent progress in this area, focusing on data available from humans. We highlight the role of obligatory (sequence-dependent) epigenomic variation as an important mechanism for generating interindividual variation that could impact our understanding of the mechanistic basis of complex trait architecture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Interindividual variation in epigenomic phenomena in humans

Loading next page...
1
 
/lp/springer_journal/interindividual-variation-in-epigenomic-phenomena-in-humans-csn21wXFsg
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-009-9219-0
Publisher site
See Article on Publisher Site

Abstract

Our knowledge of regulatory mechanisms of gene expression and other chromosomal processes related to DNA methylation and chromatin state is continuing to grow at a rapid pace. Understanding how these epigenomic phenomena vary between individuals will have an impact on understanding their broader role in determining variation in gene expression and biochemical, physiological, and behavioural phenotypes. In this review we survey recent progress in this area, focusing on data available from humans. We highlight the role of obligatory (sequence-dependent) epigenomic variation as an important mechanism for generating interindividual variation that could impact our understanding of the mechanistic basis of complex trait architecture.

Journal

Mammalian GenomeSpringer Journals

Published: Sep 18, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off