Interfacial characteristics of stratified liquid–liquid flows using a conductance probe

Interfacial characteristics of stratified liquid–liquid flows using a conductance probe In this paper, the characteristics of the interface in stratified oil–water flows and their changes during the transition to dual continuous flows were studied experimentally with a double-wire conductance probe. Experiments were carried out in an acrylic test section, 38 mm ID, using tap water and oil (ρ = 830 kg m−3 and μ = 0.0055 kg m−1 s−1) as test fluids. The boundaries between stratified and dual continuous flow were identified from high-speed imaging. A double-wire conductance probe, consisting of two 0.5 mm wires set 2 mm apart along a vertical pipe diameter, was used to obtain time records of the interface height in stratified flow. The probe was located either close to the test section inlet or at 7 m downstream the inlet, where the flow was fully developed. Data were collected for a period of 4 min at 256 Hz sampling frequency. A rigorous methodology was followed to treat the probe data and to estimate average parameters such as interface height with known accuracy and confidence intervals. The analysis ensured repeatability of the results. The procedure allowed accurate estimations of the power spectra of the probe signal and revealed the characteristic frequencies of the interface in stratified flow. It was found that the transition from stratified to dual continuous flow delayed to higher mixture velocities at input oil-to-water flow rate ratios, r, close to 1. At 7 m from the inlet, where the flow is fully developed, the interface was found to be fluctuating with three-dimensional characteristics for all conditions studied, while the oil-to-water velocity ratios, calculated from interfacial heights, were close to 1. The power spectra of the probe data showed peaks at low frequencies (1–3 Hz) that were attributed to the pumps. A range of high frequency contributions (between 10 and 40 Hz) appeared as the mixture velocity increased, which reflect the fluctuating nature of the interface. The relative intensity of these contributions increased with mixture velocity, and close to the transition to dual continuous flow, it became larger than that of the low-frequency contributions from the pumps. In contrast, close to the pipe inlet, for flow rate ratios different than one, waves appeared. These, however, died out further downstream. Experiments in Fluids Springer Journals

Interfacial characteristics of stratified liquid–liquid flows using a conductance probe

Loading next page...
Springer Berlin Heidelberg
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial