Interfacial characteristics of stratified liquid–liquid flows using a conductance probe

Interfacial characteristics of stratified liquid–liquid flows using a conductance probe In this paper, the characteristics of the interface in stratified oil–water flows and their changes during the transition to dual continuous flows were studied experimentally with a double-wire conductance probe. Experiments were carried out in an acrylic test section, 38 mm ID, using tap water and oil (ρ = 830 kg m−3 and μ = 0.0055 kg m−1 s−1) as test fluids. The boundaries between stratified and dual continuous flow were identified from high-speed imaging. A double-wire conductance probe, consisting of two 0.5 mm wires set 2 mm apart along a vertical pipe diameter, was used to obtain time records of the interface height in stratified flow. The probe was located either close to the test section inlet or at 7 m downstream the inlet, where the flow was fully developed. Data were collected for a period of 4 min at 256 Hz sampling frequency. A rigorous methodology was followed to treat the probe data and to estimate average parameters such as interface height with known accuracy and confidence intervals. The analysis ensured repeatability of the results. The procedure allowed accurate estimations of the power spectra of the probe signal and revealed the characteristic frequencies of the interface in stratified flow. It was found that the transition from stratified to dual continuous flow delayed to higher mixture velocities at input oil-to-water flow rate ratios, r, close to 1. At 7 m from the inlet, where the flow is fully developed, the interface was found to be fluctuating with three-dimensional characteristics for all conditions studied, while the oil-to-water velocity ratios, calculated from interfacial heights, were close to 1. The power spectra of the probe data showed peaks at low frequencies (1–3 Hz) that were attributed to the pumps. A range of high frequency contributions (between 10 and 40 Hz) appeared as the mixture velocity increased, which reflect the fluctuating nature of the interface. The relative intensity of these contributions increased with mixture velocity, and close to the transition to dual continuous flow, it became larger than that of the low-frequency contributions from the pumps. In contrast, close to the pipe inlet, for flow rate ratios different than one, waves appeared. These, however, died out further downstream. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Interfacial characteristics of stratified liquid–liquid flows using a conductance probe

Loading next page...
 
/lp/springer_journal/interfacial-characteristics-of-stratified-liquid-liquid-flows-using-a-OgXkVJ5SaZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1604-5
Publisher site
See Article on Publisher Site

Abstract

In this paper, the characteristics of the interface in stratified oil–water flows and their changes during the transition to dual continuous flows were studied experimentally with a double-wire conductance probe. Experiments were carried out in an acrylic test section, 38 mm ID, using tap water and oil (ρ = 830 kg m−3 and μ = 0.0055 kg m−1 s−1) as test fluids. The boundaries between stratified and dual continuous flow were identified from high-speed imaging. A double-wire conductance probe, consisting of two 0.5 mm wires set 2 mm apart along a vertical pipe diameter, was used to obtain time records of the interface height in stratified flow. The probe was located either close to the test section inlet or at 7 m downstream the inlet, where the flow was fully developed. Data were collected for a period of 4 min at 256 Hz sampling frequency. A rigorous methodology was followed to treat the probe data and to estimate average parameters such as interface height with known accuracy and confidence intervals. The analysis ensured repeatability of the results. The procedure allowed accurate estimations of the power spectra of the probe signal and revealed the characteristic frequencies of the interface in stratified flow. It was found that the transition from stratified to dual continuous flow delayed to higher mixture velocities at input oil-to-water flow rate ratios, r, close to 1. At 7 m from the inlet, where the flow is fully developed, the interface was found to be fluctuating with three-dimensional characteristics for all conditions studied, while the oil-to-water velocity ratios, calculated from interfacial heights, were close to 1. The power spectra of the probe data showed peaks at low frequencies (1–3 Hz) that were attributed to the pumps. A range of high frequency contributions (between 10 and 40 Hz) appeared as the mixture velocity increased, which reflect the fluctuating nature of the interface. The relative intensity of these contributions increased with mixture velocity, and close to the transition to dual continuous flow, it became larger than that of the low-frequency contributions from the pumps. In contrast, close to the pipe inlet, for flow rate ratios different than one, waves appeared. These, however, died out further downstream.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 4, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off