Interface and material engineering for zigzag slab lasers

Interface and material engineering for zigzag slab lasers Laser damage of zigzag slab lasers occurs at interface between laser crystal and SiO2 film. Although an additional HfO2 layer could be used to manipulate electric-field on the crystal-film interface, their high absorption and polycrystalline structure were unacceptable. SiO2 was then doped in HfO2 to suppress its crystallization and to achieve low absorption by annealing. HfxSi1−xO2 nanocomposite layers were then inserted between laser crystal and SiO2 film to minimize electric-field at crystal-film interface. Laser damage resistance of this new architecture is two times higher than that of traditional zigzag slab lasers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Interface and material engineering for zigzag slab lasers

Loading next page...
 
/lp/springer_journal/interface-and-material-engineering-for-zigzag-slab-lasers-36n30zFDU3
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16968-0
Publisher site
See Article on Publisher Site

Abstract

Laser damage of zigzag slab lasers occurs at interface between laser crystal and SiO2 film. Although an additional HfO2 layer could be used to manipulate electric-field on the crystal-film interface, their high absorption and polycrystalline structure were unacceptable. SiO2 was then doped in HfO2 to suppress its crystallization and to achieve low absorption by annealing. HfxSi1−xO2 nanocomposite layers were then inserted between laser crystal and SiO2 film to minimize electric-field at crystal-film interface. Laser damage resistance of this new architecture is two times higher than that of traditional zigzag slab lasers.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off