Interface and material engineering for zigzag slab lasers

Interface and material engineering for zigzag slab lasers Laser damage of zigzag slab lasers occurs at interface between laser crystal and SiO2 film. Although an additional HfO2 layer could be used to manipulate electric-field on the crystal-film interface, their high absorption and polycrystalline structure were unacceptable. SiO2 was then doped in HfO2 to suppress its crystallization and to achieve low absorption by annealing. HfxSi1−xO2 nanocomposite layers were then inserted between laser crystal and SiO2 film to minimize electric-field at crystal-film interface. Laser damage resistance of this new architecture is two times higher than that of traditional zigzag slab lasers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Interface and material engineering for zigzag slab lasers

Loading next page...
 
/lp/springer_journal/interface-and-material-engineering-for-zigzag-slab-lasers-36n30zFDU3
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16968-0
Publisher site
See Article on Publisher Site

Abstract

Laser damage of zigzag slab lasers occurs at interface between laser crystal and SiO2 film. Although an additional HfO2 layer could be used to manipulate electric-field on the crystal-film interface, their high absorption and polycrystalline structure were unacceptable. SiO2 was then doped in HfO2 to suppress its crystallization and to achieve low absorption by annealing. HfxSi1−xO2 nanocomposite layers were then inserted between laser crystal and SiO2 film to minimize electric-field at crystal-film interface. Laser damage resistance of this new architecture is two times higher than that of traditional zigzag slab lasers.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off