Interconverting Gating Modes of a Nonselective Cation Channel from the Tapeworm Echinococcus granulosus Reconstituted on Planar Lipid Bilayers

Interconverting Gating Modes of a Nonselective Cation Channel from the Tapeworm Echinococcus... A 107-pS (symmetrical 150 mm KCl), nonselective cation channel was reconstituted from a microsomal membrane fraction of the larval stage of the tapeworm Echinococcus granulosus. Most of the time, it displayed a high open probability (>0.95) irrespective of either the applied voltage, Ca2+, Ba2+, or tetraethylammonium concentration. Nevertheless, in contrast with this ``leaklike'' behavior, less frequently this ``all-the-time-open'' channel reversibly entered two different kinetic modes. One of them was characterized by lower P o values and some voltage sensitivity (V ½≅ 129 mV, and an equilibrium constant for channel closing changing e-fold per 63-mV change) the kinetic analysis revealing that it resulted from the appearance of voltage-sensitivity in the mean closed times and a sixfold increase in the equilibrium constant for channel closing at 0 mV. The other mode was characterized by a very fast open-close activity leading to poorly resolved current levels and a P o around 0.6–0.7 which, occasionally and in a voltage-sensitive manner, entered a long-lived nonconducting state. However, the rare nature of these mode-shifting transitions precluded a more detailed analysis of their kinetics. The conductive properties of the channel were not affected by these switches. Model gating alone does not seem to ensure any physiological role of this channel and, instead, some other channel changes must occur if this phenomenon were to be of regulatory importance in vivo. Thus, mode-shifting might constitute an alternative target for channel activity modulation also in tapeworms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Interconverting Gating Modes of a Nonselective Cation Channel from the Tapeworm Echinococcus granulosus Reconstituted on Planar Lipid Bilayers

Loading next page...
 
/lp/springer_journal/interconverting-gating-modes-of-a-nonselective-cation-channel-from-the-fyJQ2BPJCi
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900246
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial