Interchangeability of vortex-breakdown types

Interchangeability of vortex-breakdown types In order to investigate the connection between the bubble and the spiral form of vortex breakdown, experiments were conducted: an external disturbance in the form of an azimuthally spinning waveform was imposed in a pipe. The azimuthal wave number was varied by adjusting the phase difference among four oscillating pistons mounted circumferentially on the pipe. By imposing a disturbance of zero azimuthal wave number, a spiral was transformed into a bubble, and this occurred only for selective piston frequencies; the vortex breakdown which altered from the spiral to the bubble moved upstream, where it remained as a bubble as long as the external disturbance remained. Once the disturbance was removed, the bubble returned to a spiral. By imposing a disturbance of azimuthal wave number +1 (the first circumferential mode rotating in the same direction as the mean swirl), a bubble was transformed into a spiral for selective piston frequencies, and the spiral moved downstream. These preferred frequencies were found to be the same as the unexcited frequencies observed in the spiral in its natural state. As long as the external disturbance was imposed, the breakdown altered from the bubble to the spiral remained as a spiral; once the disturbance was removed, the spiral reverted to a bubble. By imposing a disturbance with azimuthal wave number –1 (the first circumferential mode rotating in the opposite direction to the mean swirl), no change was detected in either a bubble or a spiral. By imposing a disturbance with azimuthal wave number 2 (the second circumferential mode), for selective piston frequencies a bubble was transformed into what appears to be the so-called two-tailed type. Thus, it appears that hydrodynamic instability plays a role in interchanging vortex breakdown types, and a comparison with available stability theories is discussed. Experiments in Fluids Springer Journals

Interchangeability of vortex-breakdown types

Loading next page...
Copyright © 2003 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial