Interchangeability of vortex-breakdown types

Interchangeability of vortex-breakdown types In order to investigate the connection between the bubble and the spiral form of vortex breakdown, experiments were conducted: an external disturbance in the form of an azimuthally spinning waveform was imposed in a pipe. The azimuthal wave number was varied by adjusting the phase difference among four oscillating pistons mounted circumferentially on the pipe. By imposing a disturbance of zero azimuthal wave number, a spiral was transformed into a bubble, and this occurred only for selective piston frequencies; the vortex breakdown which altered from the spiral to the bubble moved upstream, where it remained as a bubble as long as the external disturbance remained. Once the disturbance was removed, the bubble returned to a spiral. By imposing a disturbance of azimuthal wave number +1 (the first circumferential mode rotating in the same direction as the mean swirl), a bubble was transformed into a spiral for selective piston frequencies, and the spiral moved downstream. These preferred frequencies were found to be the same as the unexcited frequencies observed in the spiral in its natural state. As long as the external disturbance was imposed, the breakdown altered from the bubble to the spiral remained as a spiral; once the disturbance was removed, the spiral reverted to a bubble. By imposing a disturbance with azimuthal wave number –1 (the first circumferential mode rotating in the opposite direction to the mean swirl), no change was detected in either a bubble or a spiral. By imposing a disturbance with azimuthal wave number 2 (the second circumferential mode), for selective piston frequencies a bubble was transformed into what appears to be the so-called two-tailed type. Thus, it appears that hydrodynamic instability plays a role in interchanging vortex breakdown types, and a comparison with available stability theories is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Interchangeability of vortex-breakdown types

Loading next page...
 
/lp/springer_journal/interchangeability-of-vortex-breakdown-types-2nvyiMEbgK
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0535-3
Publisher site
See Article on Publisher Site

Abstract

In order to investigate the connection between the bubble and the spiral form of vortex breakdown, experiments were conducted: an external disturbance in the form of an azimuthally spinning waveform was imposed in a pipe. The azimuthal wave number was varied by adjusting the phase difference among four oscillating pistons mounted circumferentially on the pipe. By imposing a disturbance of zero azimuthal wave number, a spiral was transformed into a bubble, and this occurred only for selective piston frequencies; the vortex breakdown which altered from the spiral to the bubble moved upstream, where it remained as a bubble as long as the external disturbance remained. Once the disturbance was removed, the bubble returned to a spiral. By imposing a disturbance of azimuthal wave number +1 (the first circumferential mode rotating in the same direction as the mean swirl), a bubble was transformed into a spiral for selective piston frequencies, and the spiral moved downstream. These preferred frequencies were found to be the same as the unexcited frequencies observed in the spiral in its natural state. As long as the external disturbance was imposed, the breakdown altered from the bubble to the spiral remained as a spiral; once the disturbance was removed, the spiral reverted to a bubble. By imposing a disturbance with azimuthal wave number –1 (the first circumferential mode rotating in the opposite direction to the mean swirl), no change was detected in either a bubble or a spiral. By imposing a disturbance with azimuthal wave number 2 (the second circumferential mode), for selective piston frequencies a bubble was transformed into what appears to be the so-called two-tailed type. Thus, it appears that hydrodynamic instability plays a role in interchanging vortex breakdown types, and a comparison with available stability theories is discussed.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 12, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off