Interband transitions and interference effects in superconducting qubits

Interband transitions and interference effects in superconducting qubits We investigate phase-sensitive interference effects in a periodically sin(2π f rf t)-driven, artificial two-state system connected to a microwave resonator at f LC ≃ 800 MHz. We observe two kinds of multiphoton transitions in the two-state system, accompanied by: (1) Several quanta from the drive at f rf and (2) one quantum at f rf and several at f LC . The former are described using phase-sensitive Landau–Zener transitions, while the latter are discussed in terms of vibronic transitions in diatomic molecules. Interference effects in the vibronic transitions governed by Franck–Condon coefficients are also considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Interband transitions and interference effects in superconducting qubits

Loading next page...
 
/lp/springer_journal/interband-transitions-and-interference-effects-in-superconducting-7uAwR5YJ5y
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-009-0102-4
Publisher site
See Article on Publisher Site

Abstract

We investigate phase-sensitive interference effects in a periodically sin(2π f rf t)-driven, artificial two-state system connected to a microwave resonator at f LC ≃ 800 MHz. We observe two kinds of multiphoton transitions in the two-state system, accompanied by: (1) Several quanta from the drive at f rf and (2) one quantum at f rf and several at f LC . The former are described using phase-sensitive Landau–Zener transitions, while the latter are discussed in terms of vibronic transitions in diatomic molecules. Interference effects in the vibronic transitions governed by Franck–Condon coefficients are also considered.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 25, 2009

References

  • Landau–Zener interferometry for qubits
    Shytov, A.V.; Ivanov, D.A.; Feigel’man, M.V.
  • Inductive single-electron transistor
    Sillanpää, M.A.; Roschier, L.; Hakonen, P.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off