Interactive effects of zinc and nickel on the glutathione system state in Mimulus guttatus plants

Interactive effects of zinc and nickel on the glutathione system state in Mimulus guttatus plants To determine whether the enhanced stress tolerance of ZnSO4 with NiSO4-treated Mimulus guttatus Fischer ex DC. plants was associated with the glutathione (GR-GSH) system, we investigated the changes in glutathione redox state (reduced (GSH), oxidized (GSSG) forms, total reduced (GSHt) glutathione, and GSH/GSSG ratio) and in the enzymatic activities of glutathione reductase (GR) and peroxidatic glutathione S-transferases (GST). The 6-week-old plants were grown in water culture during 4 weeks on a modified Rorison’s medium with ZnSO4 (50, 100, and 200 μM) and NiSO4 (20 and 80 μM) in a condition of separate or simultaneous supply of the components. Dry biomass accumulations of roots and shoots were not influenced by the examined treatments. The positive correlations between the total external concentrations of ZnSO4 and NiSO4 and the total Zn and Ni contents in roots and leaves were found. It was determined that the MDA content was higher in the ZnSO4-treated plants than in the NiSO4-treated ones. The supplementation of the ZnSO4-treated plants with varied concentrations of NiSO4 decreased the Zn-induced increase in the MDA levels. The inverse proportionality between the MDA and pigment levels in leaves was found. The Zn-Ni interactions were shown to induce the decreases in the GR activity, the total peroxidatic GST activity, and the GSH/GSSG ratio in roots. However, in leaves, the GR activity and the GSH/GSSG ratio were significantly increased and the total peroxidatic GST activity was decreased. The supplementation of the ZnSO4-treated plants with varied concentrations of NiSO4 restored the Zn-induced reduction in the GSHt levels in roots and decreased the Zn-induced increase in the GSSG levels in leaves, which resulted in more reduced state of the intracellular environment. It was likely to cause a decrease of the MDA level. Thus, our studies on the Zn−Ni interactions identified the antagonizing role of Ni in Zn toxicity by the GR-GSH system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Interactive effects of zinc and nickel on the glutathione system state in Mimulus guttatus plants

Loading next page...
 
/lp/springer_journal/interactive-effects-of-zinc-and-nickel-on-the-glutathione-system-state-Tn9dSfwLYp
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716050022
Publisher site
See Article on Publisher Site

Abstract

To determine whether the enhanced stress tolerance of ZnSO4 with NiSO4-treated Mimulus guttatus Fischer ex DC. plants was associated with the glutathione (GR-GSH) system, we investigated the changes in glutathione redox state (reduced (GSH), oxidized (GSSG) forms, total reduced (GSHt) glutathione, and GSH/GSSG ratio) and in the enzymatic activities of glutathione reductase (GR) and peroxidatic glutathione S-transferases (GST). The 6-week-old plants were grown in water culture during 4 weeks on a modified Rorison’s medium with ZnSO4 (50, 100, and 200 μM) and NiSO4 (20 and 80 μM) in a condition of separate or simultaneous supply of the components. Dry biomass accumulations of roots and shoots were not influenced by the examined treatments. The positive correlations between the total external concentrations of ZnSO4 and NiSO4 and the total Zn and Ni contents in roots and leaves were found. It was determined that the MDA content was higher in the ZnSO4-treated plants than in the NiSO4-treated ones. The supplementation of the ZnSO4-treated plants with varied concentrations of NiSO4 decreased the Zn-induced increase in the MDA levels. The inverse proportionality between the MDA and pigment levels in leaves was found. The Zn-Ni interactions were shown to induce the decreases in the GR activity, the total peroxidatic GST activity, and the GSH/GSSG ratio in roots. However, in leaves, the GR activity and the GSH/GSSG ratio were significantly increased and the total peroxidatic GST activity was decreased. The supplementation of the ZnSO4-treated plants with varied concentrations of NiSO4 restored the Zn-induced reduction in the GSHt levels in roots and decreased the Zn-induced increase in the GSSG levels in leaves, which resulted in more reduced state of the intracellular environment. It was likely to cause a decrease of the MDA level. Thus, our studies on the Zn−Ni interactions identified the antagonizing role of Ni in Zn toxicity by the GR-GSH system.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 11, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off