Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity

Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity The effects of salicylic acid (SA), sodium nitroprusside (SNP), a nitric oxide donor, and their combination (SA+SNP) on some physiological parameters of 23-day-old soybean seedlings grown under saline and nonsaline conditions were studied. The changes in the leaf area, shoot fresh and dry weights, contents of chlorophylls and carotenoids, amounts of MDA and hydrogen peroxide showed that the addition of 100 μM SA and/or 100 μM SNP markedly declined the oxidative damage to soybean plants induced by 50 and 100 μM NaCl. Our results proved that combined action of SA and nitric oxide donor significantly activated catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX), which contributed to the decay of H2O2 in soybean leaves under NaCl toxicity. The protective action of (SA+SNP) against saltinduced oxidative damage was often more efficient than effects of SA and SNP alone. We also observed that the accumulation of proline was apparently accelerated by these substances under salt stress. As well, it was observed that the interaction between SA and nitric oxide had synergistic effects in decreasing of the damages induced by NaCl salinity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity

Loading next page...
 
/lp/springer_journal/interactive-effects-of-salicylic-acid-and-nitric-oxide-on-soybean-CEOtPbAyw0
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711050220
Publisher site
See Article on Publisher Site

Abstract

The effects of salicylic acid (SA), sodium nitroprusside (SNP), a nitric oxide donor, and their combination (SA+SNP) on some physiological parameters of 23-day-old soybean seedlings grown under saline and nonsaline conditions were studied. The changes in the leaf area, shoot fresh and dry weights, contents of chlorophylls and carotenoids, amounts of MDA and hydrogen peroxide showed that the addition of 100 μM SA and/or 100 μM SNP markedly declined the oxidative damage to soybean plants induced by 50 and 100 μM NaCl. Our results proved that combined action of SA and nitric oxide donor significantly activated catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX), which contributed to the decay of H2O2 in soybean leaves under NaCl toxicity. The protective action of (SA+SNP) against saltinduced oxidative damage was often more efficient than effects of SA and SNP alone. We also observed that the accumulation of proline was apparently accelerated by these substances under salt stress. As well, it was observed that the interaction between SA and nitric oxide had synergistic effects in decreasing of the damages induced by NaCl salinity.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 21, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off