Interactions of water and methanol with a mixture of copper and zinc metals: a theoretical ab initio study

Interactions of water and methanol with a mixture of copper and zinc metals: a theoretical ab... Ab initio cluster quantum chemical calculations at the Hartree–Fock and second-order Møller–Plesset perturbation theory levels were carried out to mimic the interactions of water and methanol with a mixture of Cu and Zn metals. It was shown that both molecular and dissociative adsorption of methanol on a mixture of Cu and Zn metal catalyst are preferred over the corresponding adsorptions of water. Estimated transition-state structures for dissociation of methanol into CH·3 and OH· lie about 9.0 and 22.0 kcal/mol higher compared to the dissociated (forward reaction) and molecular adsorption (reverse reaction) complexes, respectively. Based on distinct radicals' bond energies with the active sites of the catalyst considered, it is suggested that hydrogen molecules could be formed through a chain of homogeneous reactions of methyl radicals released into the gas phase with the water and/or methanol molecules. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Interactions of water and methanol with a mixture of copper and zinc metals: a theoretical ab initio study

Loading next page...
 
/lp/springer_journal/interactions-of-water-and-methanol-with-a-mixture-of-copper-and-zinc-YTi1SzIlCw
Publisher
Brill Academic Publishers
Copyright
Copyright © 2003 by VSP 2003
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856703765694354
Publisher site
See Article on Publisher Site

Abstract

Ab initio cluster quantum chemical calculations at the Hartree–Fock and second-order Møller–Plesset perturbation theory levels were carried out to mimic the interactions of water and methanol with a mixture of Cu and Zn metals. It was shown that both molecular and dissociative adsorption of methanol on a mixture of Cu and Zn metal catalyst are preferred over the corresponding adsorptions of water. Estimated transition-state structures for dissociation of methanol into CH·3 and OH· lie about 9.0 and 22.0 kcal/mol higher compared to the dissociated (forward reaction) and molecular adsorption (reverse reaction) complexes, respectively. Based on distinct radicals' bond energies with the active sites of the catalyst considered, it is suggested that hydrogen molecules could be formed through a chain of homogeneous reactions of methyl radicals released into the gas phase with the water and/or methanol molecules.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off