Interactions between complicated flow-dispersion patterns and boundary layer evolution in a mountainous complex terrain during elevated SO2 concentrations

Interactions between complicated flow-dispersion patterns and boundary layer evolution in a... The dispersion of air pollutants from multiple industrial stacks located in complex topography is an interesting subject. An attractive case is that of the wider region of Western Macedonia in NW Greece, where the greater amount of electric power of Greece is being produced by lignite power plant stations (LPPS). Considerable amounts of atmospheric pollutants are emitted by those LPPS into the atmosphere due to the quantities of coal burned. The variability of the topographic features and the terrain complexity of the area may lead to the formation of local atmospheric circulations of various types, which affect pollutant’s transport and dispersion. In the present work, the dispersion conditions that favor the pollutants accumulation in the area are investigated. For this purpose, 1 year’s hourly SO2 concentrations, surface wind measurements and a mesoscale meteorological and air pollution model (The Air Pollution Model, TAPM) were used. The SO2 and wind measurements were collected in situ from monitoring stations located nearby and at a greater distance from the power plants. Yearly and daily variations of SO2 concentrations are analyzed and discussed, and the period with the highest concentrations is selected. During this period, the evolution of the atmospheric boundary layer (ABL) in the area as well as the pollutants dispersion is examined. Statistical measures between modeled and observed meteorological data were in good agreement and a good correlation coefficient 0.68 and 0.98 was found in the SO2 variations. The analysis of the wind fields indicated better ventilation in the center of the area due to topographic venturi effects, while the dispersion mechanism which resulted in the relatively high ground level concentrations was fumigation. Finally, the evolution of the ABL was affected by the complex interactions between topography and mesoscale flows as it was found by the turbulent kinetic energy cross sections. Meteorology and Atmospheric Physics Springer Journals

Interactions between complicated flow-dispersion patterns and boundary layer evolution in a mountainous complex terrain during elevated SO2 concentrations

Loading next page...
Springer Vienna
Copyright © 2016 by Springer-Verlag Wien
Earth Sciences; Atmospheric Sciences; Meteorology; Math. Appl. in Environmental Science; Terrestrial Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial