Interaction of Surface Waves in a Basin with Floating Broken Ice

Interaction of Surface Waves in a Basin with Floating Broken Ice The multiscale method is used to obtain asymptotic expansions up to the quantities of the third order for the elevations of the surface of the basin and the velocity potential of motion of liquid particles in the wave disturbances formed in the process of nonlinear interaction of periodic running waves of the first and second harmonics in a homogeneous ideal incompressible liquid of constant finite depth covered with broken ice. The dependences of the amplitude-phase structure of disturbances on the ice thickness, depth of the basin, and the parameters of interacting harmonics are investigated. We estimate the error of evaluation of the characteristics of the formed vertical displacement of the surface of the basin and nonlinear mass transfer introduced by neglecting the curvature of the wave profile in the expression for the velocity potential in deducing the kinematic and dynamic surface boundary conditions for nonlinear approximations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Interaction of Surface Waves in a Basin with Floating Broken Ice

Loading next page...
 
/lp/springer_journal/interaction-of-surface-waves-in-a-basin-with-floating-broken-ice-VyuUIJNKA9
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by Plenum Publishing Corporation
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1023/B:POCE.0000013230.35798.a4
Publisher site
See Article on Publisher Site

Abstract

The multiscale method is used to obtain asymptotic expansions up to the quantities of the third order for the elevations of the surface of the basin and the velocity potential of motion of liquid particles in the wave disturbances formed in the process of nonlinear interaction of periodic running waves of the first and second harmonics in a homogeneous ideal incompressible liquid of constant finite depth covered with broken ice. The dependences of the amplitude-phase structure of disturbances on the ice thickness, depth of the basin, and the parameters of interacting harmonics are investigated. We estimate the error of evaluation of the characteristics of the formed vertical displacement of the surface of the basin and nonlinear mass transfer introduced by neglecting the curvature of the wave profile in the expression for the velocity potential in deducing the kinematic and dynamic surface boundary conditions for nonlinear approximations.

Journal

Physical OceanographySpringer Journals

Published: Oct 20, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off