Interaction of Surface Waves in a Basin with Floating Broken Ice

Interaction of Surface Waves in a Basin with Floating Broken Ice The multiscale method is used to obtain asymptotic expansions up to the quantities of the third order for the elevations of the surface of the basin and the velocity potential of motion of liquid particles in the wave disturbances formed in the process of nonlinear interaction of periodic running waves of the first and second harmonics in a homogeneous ideal incompressible liquid of constant finite depth covered with broken ice. The dependences of the amplitude-phase structure of disturbances on the ice thickness, depth of the basin, and the parameters of interacting harmonics are investigated. We estimate the error of evaluation of the characteristics of the formed vertical displacement of the surface of the basin and nonlinear mass transfer introduced by neglecting the curvature of the wave profile in the expression for the velocity potential in deducing the kinematic and dynamic surface boundary conditions for nonlinear approximations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Interaction of Surface Waves in a Basin with Floating Broken Ice

Loading next page...
 
/lp/springer_journal/interaction-of-surface-waves-in-a-basin-with-floating-broken-ice-VyuUIJNKA9
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by Plenum Publishing Corporation
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1023/B:POCE.0000013230.35798.a4
Publisher site
See Article on Publisher Site

Abstract

The multiscale method is used to obtain asymptotic expansions up to the quantities of the third order for the elevations of the surface of the basin and the velocity potential of motion of liquid particles in the wave disturbances formed in the process of nonlinear interaction of periodic running waves of the first and second harmonics in a homogeneous ideal incompressible liquid of constant finite depth covered with broken ice. The dependences of the amplitude-phase structure of disturbances on the ice thickness, depth of the basin, and the parameters of interacting harmonics are investigated. We estimate the error of evaluation of the characteristics of the formed vertical displacement of the surface of the basin and nonlinear mass transfer introduced by neglecting the curvature of the wave profile in the expression for the velocity potential in deducing the kinematic and dynamic surface boundary conditions for nonlinear approximations.

Journal

Physical OceanographySpringer Journals

Published: Oct 20, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off