Interaction of Selected Phenylpropenes with Dipalmitoylphosphatidylcholine Membrane and Their Relevance to Antibacterial Activity

Interaction of Selected Phenylpropenes with Dipalmitoylphosphatidylcholine Membrane and Their... The effect of structurally closely related phenylpropenes (PPs), estragole, anethole, eugenol, and isoeugenol, on the fluidity of dipalmitoyl phosphatidyl choline (DPPC) liposome membrane was investigated by DSC, Raman, and fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH). Liposomes were prepared by thin-film hydration method at various DPPC:PP molar ratios. The DPH anisotropy measurements of blank and PP-loaded liposomes were performed at 28, 41, and 50 °C, which correspond, respectively, to gel phase, main transition temperature of DPPC, and liquid phase. The Raman images showed the formation of nano- and micrometric spherical multi-lamellar vesicles. All studied PPs exhibited a membrane fluidizing effect which was reinforced by the presence of phenolic hydroxyl group in eugenol and isoeugenol. The PPs interacted with the choline head group and the alkyl chains of DPPC membrane, wherein isoeugenol and anethole possessing the same C7–C8 position of the double bond in the propenyl side chain, incorporated deeply in the bilayer. Additionally, the PPs were analyzed for antibacterial activity against E. coli by macrobroth dilution method. Anethole and estragole were more efficient in inhibiting the bacterial growth than eugenol and isoeugenol. We conclude that the fluidizing effect of PPs on the membrane is a common mechanism that is not related to the hydrophobicity of the PP molecule. Besides, other target sites may be involved in PP antibacterial activity against Gram-negative bacteria. The greater hydrophobicity of these PPs may contribute to their penetrability through the outer bacterial membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Interaction of Selected Phenylpropenes with Dipalmitoylphosphatidylcholine Membrane and Their Relevance to Antibacterial Activity

Loading next page...
 
/lp/springer_journal/interaction-of-selected-phenylpropenes-with-V8UX4QNj1H
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-017-9957-y
Publisher site
See Article on Publisher Site

Abstract

The effect of structurally closely related phenylpropenes (PPs), estragole, anethole, eugenol, and isoeugenol, on the fluidity of dipalmitoyl phosphatidyl choline (DPPC) liposome membrane was investigated by DSC, Raman, and fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH). Liposomes were prepared by thin-film hydration method at various DPPC:PP molar ratios. The DPH anisotropy measurements of blank and PP-loaded liposomes were performed at 28, 41, and 50 °C, which correspond, respectively, to gel phase, main transition temperature of DPPC, and liquid phase. The Raman images showed the formation of nano- and micrometric spherical multi-lamellar vesicles. All studied PPs exhibited a membrane fluidizing effect which was reinforced by the presence of phenolic hydroxyl group in eugenol and isoeugenol. The PPs interacted with the choline head group and the alkyl chains of DPPC membrane, wherein isoeugenol and anethole possessing the same C7–C8 position of the double bond in the propenyl side chain, incorporated deeply in the bilayer. Additionally, the PPs were analyzed for antibacterial activity against E. coli by macrobroth dilution method. Anethole and estragole were more efficient in inhibiting the bacterial growth than eugenol and isoeugenol. We conclude that the fluidizing effect of PPs on the membrane is a common mechanism that is not related to the hydrophobicity of the PP molecule. Besides, other target sites may be involved in PP antibacterial activity against Gram-negative bacteria. The greater hydrophobicity of these PPs may contribute to their penetrability through the outer bacterial membrane.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off