Interaction of Scots Pine Defensin with Model Membrane by Coarse-Grained Molecular Dynamics

Interaction of Scots Pine Defensin with Model Membrane by Coarse-Grained Molecular Dynamics Plant defensins are a part of the innate immune system of plants that acts against a broad range of pathogens. Many plant defensins, including pine defensins, show strong antifungal activity that is associated with their ability to penetrate into the fungal cell membrane. However, the exact molecular mechanism of their action remains poorly defined. To obtain insight into the mechanism of protein–membrane interaction, we applied a coarse-grained molecular dynamics simulation to study the interaction of pine defensin with two model membranes: the first consisted of zwitterion-neutral POPC molecules and the second was composed of combined anionic POPG and POPC. The simulations show that defensin does not form stable complexes with the neutral membrane but does interact with the combined POPG/POPC membrane. In the latter case, defensin attaches to the membrane surface by interacting with lipid polar heads without deep penetration into the hydrophobic tail zone. Electrostatic interactions are a driving force of the complex formation, which determines the orientation of the protein relative to the bilayer surface. Two favorable orientations of defensin are detected where the defensin molecule orients either perpendicular or parallel to the membrane plane. Being positively charged, pine defensin induces changes in the lipid distribution along the membrane, resulting in the formation of zones with different electrostatic potentials that can cause deformation or distortion of the membrane. Pine defensin is a representative of plant defensins, and hence the results of this study can be applied to other members of the family. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Interaction of Scots Pine Defensin with Model Membrane by Coarse-Grained Molecular Dynamics

Loading next page...
 
/lp/springer_journal/interaction-of-scots-pine-defensin-with-model-membrane-by-coarse-6a3cIvfzSE
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-017-9950-5
Publisher site
See Article on Publisher Site

Abstract

Plant defensins are a part of the innate immune system of plants that acts against a broad range of pathogens. Many plant defensins, including pine defensins, show strong antifungal activity that is associated with their ability to penetrate into the fungal cell membrane. However, the exact molecular mechanism of their action remains poorly defined. To obtain insight into the mechanism of protein–membrane interaction, we applied a coarse-grained molecular dynamics simulation to study the interaction of pine defensin with two model membranes: the first consisted of zwitterion-neutral POPC molecules and the second was composed of combined anionic POPG and POPC. The simulations show that defensin does not form stable complexes with the neutral membrane but does interact with the combined POPG/POPC membrane. In the latter case, defensin attaches to the membrane surface by interacting with lipid polar heads without deep penetration into the hydrophobic tail zone. Electrostatic interactions are a driving force of the complex formation, which determines the orientation of the protein relative to the bilayer surface. Two favorable orientations of defensin are detected where the defensin molecule orients either perpendicular or parallel to the membrane plane. Being positively charged, pine defensin induces changes in the lipid distribution along the membrane, resulting in the formation of zones with different electrostatic potentials that can cause deformation or distortion of the membrane. Pine defensin is a representative of plant defensins, and hence the results of this study can be applied to other members of the family.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off