Interaction of Scots Pine Defensin with Model Membrane by Coarse-Grained Molecular Dynamics

Interaction of Scots Pine Defensin with Model Membrane by Coarse-Grained Molecular Dynamics Plant defensins are a part of the innate immune system of plants that acts against a broad range of pathogens. Many plant defensins, including pine defensins, show strong antifungal activity that is associated with their ability to penetrate into the fungal cell membrane. However, the exact molecular mechanism of their action remains poorly defined. To obtain insight into the mechanism of protein–membrane interaction, we applied a coarse-grained molecular dynamics simulation to study the interaction of pine defensin with two model membranes: the first consisted of zwitterion-neutral POPC molecules and the second was composed of combined anionic POPG and POPC. The simulations show that defensin does not form stable complexes with the neutral membrane but does interact with the combined POPG/POPC membrane. In the latter case, defensin attaches to the membrane surface by interacting with lipid polar heads without deep penetration into the hydrophobic tail zone. Electrostatic interactions are a driving force of the complex formation, which determines the orientation of the protein relative to the bilayer surface. Two favorable orientations of defensin are detected where the defensin molecule orients either perpendicular or parallel to the membrane plane. Being positively charged, pine defensin induces changes in the lipid distribution along the membrane, resulting in the formation of zones with different electrostatic potentials that can cause deformation or distortion of the membrane. Pine defensin is a representative of plant defensins, and hence the results of this study can be applied to other members of the family. The Journal of Membrane Biology Springer Journals

Interaction of Scots Pine Defensin with Model Membrane by Coarse-Grained Molecular Dynamics

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial