Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown

Interaction of heat release and vortex breakdown during flame flashback driven by combustion... The interaction of heat release by chemical reaction and the flow dominates flame transition in swirling flows caused by combustion induced vortex breakdown (CIVB). The simultaneous application of 1 kHz high-speed particle imaging velocimetry (PIV) for the analysis of the flow field and OH planar laser-induced fluorescence for the detection of the flame front is particularly useful for the improvement of the understanding of the observed fast CIVB driven flame propagation. For the first time, the combination of both techniques was successfully applied to confined swirling flows. In the study, the flow field characteristics of an aerodynamically stabilized burner system with CIVB are analyzed in great depth. The influence of geometric parameters of the swirl generator was investigated and conclusions concerning the proper burner design of vortex breakdown premix burners are drawn from the experimental results. In particular, the effect of the vortex core with respect to the stability of the swirl stabilized burner is analyzed. The contribution of combustion to vortex breakdown is shown comparing isothermal and reacting flows. The presented data reveals that at the onset of CIVB driven flame transition, the azimuthal vorticity leads to the formation of a closed recirculation bubble at the tip of the internal recirculation zone. Once this bubble propagates upstream, the flame is able to follow and propagate relative to the bulk flow velocity with a velocity far beyond the turbulent flame speed. The interaction of reaction and flow was observed for different volumetric heat releases. The experiments confirm the CIVB theory of the authors, which was initially developed on the basis of a CFD study alone. Both the volume expansion and the baroclinic torque have an effect on whether fast flame propagation occurs. Whereas the volume expansion caused by the heat release stabilizes the flow field and the reaction, the baroclinic torque stimulates flame transition. For upstream propagation the flame tip has to have a position downstream of the stagnation point of the bubble. Else, the required transition inducing force is insufficient and the flame remains stable. In case the flame reaches positions too close or even upstream of the stagnation point, the fast propagation is interrupted or even prohibited. The key finding that the relative position of flame and stagnation bubble governs CIVB is discussed on the basis of high-speed LIF/PIV data as well as chemiluminescence. Since essentially the same behavior has been observed before in tests of a totally different swirler design and flow field, the conclusion can be made that the root cause for CIVB independent of the special geometry has been found. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown

Loading next page...
 
/lp/springer_journal/interaction-of-heat-release-and-vortex-breakdown-during-flame-tF4BR8JNJV
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0679-5
Publisher site
See Article on Publisher Site

Abstract

The interaction of heat release by chemical reaction and the flow dominates flame transition in swirling flows caused by combustion induced vortex breakdown (CIVB). The simultaneous application of 1 kHz high-speed particle imaging velocimetry (PIV) for the analysis of the flow field and OH planar laser-induced fluorescence for the detection of the flame front is particularly useful for the improvement of the understanding of the observed fast CIVB driven flame propagation. For the first time, the combination of both techniques was successfully applied to confined swirling flows. In the study, the flow field characteristics of an aerodynamically stabilized burner system with CIVB are analyzed in great depth. The influence of geometric parameters of the swirl generator was investigated and conclusions concerning the proper burner design of vortex breakdown premix burners are drawn from the experimental results. In particular, the effect of the vortex core with respect to the stability of the swirl stabilized burner is analyzed. The contribution of combustion to vortex breakdown is shown comparing isothermal and reacting flows. The presented data reveals that at the onset of CIVB driven flame transition, the azimuthal vorticity leads to the formation of a closed recirculation bubble at the tip of the internal recirculation zone. Once this bubble propagates upstream, the flame is able to follow and propagate relative to the bulk flow velocity with a velocity far beyond the turbulent flame speed. The interaction of reaction and flow was observed for different volumetric heat releases. The experiments confirm the CIVB theory of the authors, which was initially developed on the basis of a CFD study alone. Both the volume expansion and the baroclinic torque have an effect on whether fast flame propagation occurs. Whereas the volume expansion caused by the heat release stabilizes the flow field and the reaction, the baroclinic torque stimulates flame transition. For upstream propagation the flame tip has to have a position downstream of the stagnation point of the bubble. Else, the required transition inducing force is insufficient and the flame remains stable. In case the flame reaches positions too close or even upstream of the stagnation point, the fast propagation is interrupted or even prohibited. The key finding that the relative position of flame and stagnation bubble governs CIVB is discussed on the basis of high-speed LIF/PIV data as well as chemiluminescence. Since essentially the same behavior has been observed before in tests of a totally different swirler design and flow field, the conclusion can be made that the root cause for CIVB independent of the special geometry has been found.

Journal

Experiments in FluidsSpringer Journals

Published: May 24, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off