Interaction of a Sliding Wedge with a Metallic Substrate Containing a Single Inhomogeneity

Interaction of a Sliding Wedge with a Metallic Substrate Containing a Single Inhomogeneity Surface folding is a recently discovered unsteady plastic flow mode in metal sliding, caused by microstructure-related spatial heterogeneity. In this work, we simulate a wedge sliding against a metallic specimen with a single, near-surface inhomogeneity or pseudograin, representative of unit asperity–grain interactions. The inhomogeneity is either plastically softer or harder than the surrounding substrate and is perfectly bonded to it. Remarkably, this simple model is able to reproduce numerous experimentally observed aspects of unsteady sliding, including the development of bumps and depressions on the prow, surface self-contact (fold) formation and the development of crack-like damage features on the residual surface. It is found that a hard inhomogeneity causes surface depressions, while a soft inhomogeneity causes surface bumps. Both features develop into folds, and subsequently, crack-like damage features. The model also reproduces the effects of sliding incidence angle, friction and size of inhomogeneity on the sliding response. The propensity to bump and fold formation decreases on increasing the depth at which the inhomogeneity is embedded. Analysis reveals that plastic buckling is a plausible mechanism for the development of perturbations on the surface of the prow. The present model differs from the classical triboplastic models of Oxley and Torrance mainly by way of the added inhomogeneity and is a minimal model to produce folding and associated damage in a single sliding pass. Implications for wear and deformation processing are discussed. Tribology Letters Springer Journals

Interaction of a Sliding Wedge with a Metallic Substrate Containing a Single Inhomogeneity

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial