Interaction of a polydisperse spray with vortices

Interaction of a polydisperse spray with vortices The objective of the present work is to provide, through the association of optical diagnostics on a well-chosen experimental configuration, new insights into the coupling of a vortical gaseous flow with a polydisperse evaporating spray representative of practical injections. A cloud of droplets is injected in an inert laminar round jet, axisymmetric and pulsated, enabling the study of the interaction of strong-vorticity structures with a polydisperse spray. The experiment is a laboratory-scale representation of realistic injection configurations such as in engine combustion chambers or industrial burners. The chosen set-up leads to a well-controlled configuration and allows the coupling of two optical diagnostics, particle imaging velocimetry (PIV) and interferometric particle imaging (IPI), which leads to the study of both the flow dynamic and the droplet size distribution. The behaviour of droplets is analysed regarding their relaxing and evaporating properties. Size-conditioned preferential concentration of both weakly evaporating and strongly evaporating sprays is investigated. Droplet trajectories are also analysed by means of high-rate tomographic visualizations. The time history between their ejection from the nozzle and their interaction with the vortex is strongly related to the droplet preferential concentration and the observed heterogeneous repartition in the gas flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Interaction of a polydisperse spray with vortices

Loading next page...
 
/lp/springer_journal/interaction-of-a-polydisperse-spray-with-vortices-DBuAYootfR
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1050-1
Publisher site
See Article on Publisher Site

Abstract

The objective of the present work is to provide, through the association of optical diagnostics on a well-chosen experimental configuration, new insights into the coupling of a vortical gaseous flow with a polydisperse evaporating spray representative of practical injections. A cloud of droplets is injected in an inert laminar round jet, axisymmetric and pulsated, enabling the study of the interaction of strong-vorticity structures with a polydisperse spray. The experiment is a laboratory-scale representation of realistic injection configurations such as in engine combustion chambers or industrial burners. The chosen set-up leads to a well-controlled configuration and allows the coupling of two optical diagnostics, particle imaging velocimetry (PIV) and interferometric particle imaging (IPI), which leads to the study of both the flow dynamic and the droplet size distribution. The behaviour of droplets is analysed regarding their relaxing and evaporating properties. Size-conditioned preferential concentration of both weakly evaporating and strongly evaporating sprays is investigated. Droplet trajectories are also analysed by means of high-rate tomographic visualizations. The time history between their ejection from the nozzle and their interaction with the vortex is strongly related to the droplet preferential concentration and the observed heterogeneous repartition in the gas flow.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 17, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off