Interaction network of proteins associated with abiotic stress response and development in wheat

Interaction network of proteins associated with abiotic stress response and development in wheat Wheat is the most widely adapted crop to abiotic stresses and considered an excellent system to study stress tolerance in spite of its genetic complexity. Recent studies indicated that several hundred genes are either up- or down-regulated in response to stress treatment. To elucidate the function of some of these genes, an interactome of proteins associated with abiotic stress response and development in wheat was generated using the yeast two-hybrid GAL4 system and specific protein interaction assays. The interactome is comprised of 73 proteins, generating 97 interactions pairs. Twenty-one interactions were confirmed by bimolecular fluorescent complementation in Nicotiana benthamiana. A confidence-scoring system was elaborated to evaluate the significance of the interactions. The main feature of this interactome is that almost all bait proteins along with their interactors were interconnected, creating a spider web-like structure. The interactome revealed also the presence of a “cluster of proteins involved in flowering control” in three- and four-protein interaction loops.This network provides a novel insight into the complex relationships among transcription factors known to play central roles in vernalization, flower initiation and abscisic acid signaling, as well as associations that tie abiotic stress with other regulatory and signaling proteins. This analysis provides useful information in elucidating the molecular mechanism associated with abiotic stress response in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Interaction network of proteins associated with abiotic stress response and development in wheat

Loading next page...
 
/lp/springer_journal/interaction-network-of-proteins-associated-with-abiotic-stress-v8pEps6UIB
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9119-6
Publisher site
See Article on Publisher Site

Abstract

Wheat is the most widely adapted crop to abiotic stresses and considered an excellent system to study stress tolerance in spite of its genetic complexity. Recent studies indicated that several hundred genes are either up- or down-regulated in response to stress treatment. To elucidate the function of some of these genes, an interactome of proteins associated with abiotic stress response and development in wheat was generated using the yeast two-hybrid GAL4 system and specific protein interaction assays. The interactome is comprised of 73 proteins, generating 97 interactions pairs. Twenty-one interactions were confirmed by bimolecular fluorescent complementation in Nicotiana benthamiana. A confidence-scoring system was elaborated to evaluate the significance of the interactions. The main feature of this interactome is that almost all bait proteins along with their interactors were interconnected, creating a spider web-like structure. The interactome revealed also the presence of a “cluster of proteins involved in flowering control” in three- and four-protein interaction loops.This network provides a novel insight into the complex relationships among transcription factors known to play central roles in vernalization, flower initiation and abscisic acid signaling, as well as associations that tie abiotic stress with other regulatory and signaling proteins. This analysis provides useful information in elucidating the molecular mechanism associated with abiotic stress response in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off