Interaction Effects in Assembly of Magnetic Nanoparticles

Interaction Effects in Assembly of Magnetic Nanoparticles A specific absorption rate of a dilute assembly of various random clusters of iron oxide nanoparticles in alternating magnetic field has been calculated using Landau–Lifshitz stochastic equation. This approach simultaneously takes into account both the presence of thermal fluctuations of the nanoparticle magnetic moments and magneto-dipole interaction between the nanoparticles of the clusters. It is shown that for usual 3D clusters, the intensity of the magneto-dipole interaction is determined mainly by the cluster packing density η = N p V/V cl , where N p is the average number of the particles in the cluster, V is the nanoparticle volume, and V cl is the cluster volume. The area of the low frequency hysteresis loop and the assembly-specific absorption rate have been found to be considerably reduced when the packing density of the clusters increases in the range of 0.005 ≤ η < 0.4. The dependence of the specific absorption rate on the mean nanoparticle diameter is retained with an increase of η, but becomes less pronounced. For fractal clusters of nanoparticles, which arise in biological media, in addition to a considerable reduction of the absorption rate, the absorption maximum is shifted to smaller particle diameters. It is found also that the specific absorption rate of fractal clusters increases appreciably with an increase of the thickness of nonmagnetic shells at the nanoparticle surfaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Research Letters Springer Journals

Interaction Effects in Assembly of Magnetic Nanoparticles

Loading next page...
 
/lp/springer_journal/interaction-effects-in-assembly-of-magnetic-nanoparticles-Ux1120V4xZ
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s).
Subject
Materials Science; Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine
ISSN
1931-7573
eISSN
1556-276X
D.O.I.
10.1186/s11671-017-2263-x
Publisher site
See Article on Publisher Site

Abstract

A specific absorption rate of a dilute assembly of various random clusters of iron oxide nanoparticles in alternating magnetic field has been calculated using Landau–Lifshitz stochastic equation. This approach simultaneously takes into account both the presence of thermal fluctuations of the nanoparticle magnetic moments and magneto-dipole interaction between the nanoparticles of the clusters. It is shown that for usual 3D clusters, the intensity of the magneto-dipole interaction is determined mainly by the cluster packing density η = N p V/V cl , where N p is the average number of the particles in the cluster, V is the nanoparticle volume, and V cl is the cluster volume. The area of the low frequency hysteresis loop and the assembly-specific absorption rate have been found to be considerably reduced when the packing density of the clusters increases in the range of 0.005 ≤ η < 0.4. The dependence of the specific absorption rate on the mean nanoparticle diameter is retained with an increase of η, but becomes less pronounced. For fractal clusters of nanoparticles, which arise in biological media, in addition to a considerable reduction of the absorption rate, the absorption maximum is shifted to smaller particle diameters. It is found also that the specific absorption rate of fractal clusters increases appreciably with an increase of the thickness of nonmagnetic shells at the nanoparticle surfaces.

Journal

Nanoscale Research LettersSpringer Journals

Published: Aug 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off