Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity

Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts... The begomovirus AL2 protein is a transcriptional activator, a silencing suppressor, and inhibitor of basal defense. AL2 forms a complex at the CP promoter, through interaction with a plant-specific DNA-binding protein, Arabidopsis PEAPOD2 (also known as TIFY4B). AtTIFY4B has three domains (PPD, TIFY and CCT_2) conserved between homologs from different plant species. We confirmed that the AL2 protein from Tomato golden mosaic virus and Cabbage leaf curl virus interacts with TIFY4B from Arabidopsis, tomato and Nicotiana benthamiana in the nucleus of plant cells. Bimolecular Fluorescence Complementation demonstrated that the interaction involves both the TIFY and CCT_2 domains. Surprisingly, amino acids 84–150 can prevent AtTIFY4B from localizing to the nucleus, and interaction with AL2 results in some of the protein re-entering the nucleus. When AtTIFY4B is over-expressed, we observe an increase in mean latent period, where systemic symptoms are detected on average, 4 days later than in mock treated plants. This appears to be a consequence of reduced viral DNA titers, possibly related to the role of TIFY4B in cell cycle arrest. Our results point to a potential role for TIFY4B in host defense against geminiviruses. Expression of TIFY4B in N. benthamiana increases in response to geminivirus infection, which would result in suppression of proliferation, reducing viral replication. Geminiviruses may counter this defense response through an interaction between AL2 and TIFY4B, which would inhibit TIY4B function. The consequence of this inhibition would be failure to arrest the cell cycle, providing an environment conducive for geminivirus replication. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity

Loading next page...
 
/lp/springer_journal/interaction-between-the-transcription-factor-attify4b-and-begomovirus-e1Gr6hVGPv
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0222-9
Publisher site
See Article on Publisher Site

Abstract

The begomovirus AL2 protein is a transcriptional activator, a silencing suppressor, and inhibitor of basal defense. AL2 forms a complex at the CP promoter, through interaction with a plant-specific DNA-binding protein, Arabidopsis PEAPOD2 (also known as TIFY4B). AtTIFY4B has three domains (PPD, TIFY and CCT_2) conserved between homologs from different plant species. We confirmed that the AL2 protein from Tomato golden mosaic virus and Cabbage leaf curl virus interacts with TIFY4B from Arabidopsis, tomato and Nicotiana benthamiana in the nucleus of plant cells. Bimolecular Fluorescence Complementation demonstrated that the interaction involves both the TIFY and CCT_2 domains. Surprisingly, amino acids 84–150 can prevent AtTIFY4B from localizing to the nucleus, and interaction with AL2 results in some of the protein re-entering the nucleus. When AtTIFY4B is over-expressed, we observe an increase in mean latent period, where systemic symptoms are detected on average, 4 days later than in mock treated plants. This appears to be a consequence of reduced viral DNA titers, possibly related to the role of TIFY4B in cell cycle arrest. Our results point to a potential role for TIFY4B in host defense against geminiviruses. Expression of TIFY4B in N. benthamiana increases in response to geminivirus infection, which would result in suppression of proliferation, reducing viral replication. Geminiviruses may counter this defense response through an interaction between AL2 and TIFY4B, which would inhibit TIY4B function. The consequence of this inhibition would be failure to arrest the cell cycle, providing an environment conducive for geminivirus replication.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 11, 2014

References

  • A glucocorticoid-mediated transcriptional induction system in transgenic plants
    Aoyama, T; Chua, N-H
  • Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection
    Ascencio-Ibañez, JT; Sozzani, R; Lee, T-J; Chu, T-M; Wolfinger, RD; Cellab, R; Hanley-Bowdoin, L
  • Origin and evolutionary analysis of the plant-specific TIFY transcription factor family
    Bai, Y; Meng, Y; Huang, D; Qi, Y; Chen, M

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off