Interaction between sodium tanshinone IIA sulfonate and the adriamycin semiquinone free radical: A possible mechanism for antagonizing adriamycin-induced cardiotoxity

Interaction between sodium tanshinone IIA sulfonate and the adriamycin semiquinone free radical:... Adriamycin (ADR) is a powerful and widely used antitumor drug, but its dose dependent cardiotoxicity limits its application. This side effect is believed to be caused by the adriamycin semiquinone free radical (ASFR). The primary focus of this work is to test effects of sodium tanshinone IIA sulfonate (STS) on ASFR and adriamycin–induced lipid peroxidation. It was found that ADR, whether in the system of heart homogenate, heart mitochondria or heart submitochondria, with NADH as the substrate or in xanthine/xanthine oxidase under anaerobic conditions, all produced ASFR rapidly. STS was shown to effectively scavenge ASFR in all these systems and postpone the appearance of ASFR. The delayed time was proportional to the amount of STS. Under aerobic conditions, ASFR could be oxidized to generate oxygen free radicals. STS could not scavenge these oxygen free radicals, but it could effectively scavenge lipid free radicals generated from membrane lipid peroxidation of heart mitochondria. STS could significantly reduce mitochondrial swelling and lipid peroxidation induced by ADR. Animal experiments show that treatment of STS could inhibit endogenous lipid peroxidation caused by ADR. Here, a protective mechanism of STS is suggested that STS can rapidly and univalently oxidize ASFR, causing the cycle of adriamycin between its quinone form and semiquinone form and inhibiting the accumulation of ASFR. Under aerobic condition, STS can protect heart mitochondria by scavenging lipid free radicals generated from adriamycin-induced mitochondrial lipid peroxidation. This investigation shows that STS may be a physiological drug to antagonize the cardiotoxicity of ADR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Interaction between sodium tanshinone IIA sulfonate and the adriamycin semiquinone free radical: A possible mechanism for antagonizing adriamycin-induced cardiotoxity

Loading next page...
 
/lp/springer_journal/interaction-between-sodium-tanshinone-iia-sulfonate-and-the-adriamycin-0zc0LBz8cx
Publisher
Brill Academic Publishers
Copyright
Copyright © 2002 by VSP 2002
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/15685670260188593
Publisher site
See Article on Publisher Site

References

  • Microsomal lipid peroxidation
    Buege, J. A.; Aust, S. D.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial