Inter-domain optical path provisioning with blocking avoidance by intra-domain immediate reroute-based semi-proactive hierarchical PCE

Inter-domain optical path provisioning with blocking avoidance by intra-domain immediate... Optical fiber networks have become the foundations of communication system to provide enormous transmission capacity with less cost. Connection blocking is an inherent attribute and influences optical networks’ performance, especially in multi-domain network scenarios. We analyze the reason and effect of blockings including routing blockings and signaling blockings. We regard the cause of signaling blockings as the information asynchronization in resource reservation process. We define the concept of Information Asynchronization Period to describe the effect of signaling blockings. To reduce signaling blockings in end-to-end optical path provisioning for multi-domain scenarios, we propose a novel network routing and control scheme, named Intra-Domain Immediate Reroute based Semi-Proactive Hierarchical Path Computation Element (IDIRSP H-PCE). The proposed routing and control scheme mainly consists of two parts, Semi-Proactive routing and Intra-Domain Immediate Reroute mechanism. Dynamic network simulations verify our proposed scheme. We compare the network performance with Reactive Backward Recursive PCE-based Computation (BRPC) based PCE, Reactive H-PCE and Proactive H-PCE. Simulation results indicate that IDIRSP H-PCE can provide connection with a very low blocking probability in light load case, which is close to Proactive H-PCE, and obviously better than BRPC based Reactive PCE and Reactive H-PCE. For heavy load case, IDIRSP H-PCE has a remarkably lower blocking probability than other three methods. Moreover, we test our proposed routing and control scheme when facing link faults. Simulation results indicate that IDIRSP H-PCE can greatly improve the traffic access rate and optimize the network performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Inter-domain optical path provisioning with blocking avoidance by intra-domain immediate reroute-based semi-proactive hierarchical PCE

Loading next page...
 
/lp/springer_journal/inter-domain-optical-path-provisioning-with-blocking-avoidance-by-Wvv3BD0yzy
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-016-0654-z
Publisher site
See Article on Publisher Site

Abstract

Optical fiber networks have become the foundations of communication system to provide enormous transmission capacity with less cost. Connection blocking is an inherent attribute and influences optical networks’ performance, especially in multi-domain network scenarios. We analyze the reason and effect of blockings including routing blockings and signaling blockings. We regard the cause of signaling blockings as the information asynchronization in resource reservation process. We define the concept of Information Asynchronization Period to describe the effect of signaling blockings. To reduce signaling blockings in end-to-end optical path provisioning for multi-domain scenarios, we propose a novel network routing and control scheme, named Intra-Domain Immediate Reroute based Semi-Proactive Hierarchical Path Computation Element (IDIRSP H-PCE). The proposed routing and control scheme mainly consists of two parts, Semi-Proactive routing and Intra-Domain Immediate Reroute mechanism. Dynamic network simulations verify our proposed scheme. We compare the network performance with Reactive Backward Recursive PCE-based Computation (BRPC) based PCE, Reactive H-PCE and Proactive H-PCE. Simulation results indicate that IDIRSP H-PCE can provide connection with a very low blocking probability in light load case, which is close to Proactive H-PCE, and obviously better than BRPC based Reactive PCE and Reactive H-PCE. For heavy load case, IDIRSP H-PCE has a remarkably lower blocking probability than other three methods. Moreover, we test our proposed routing and control scheme when facing link faults. Simulation results indicate that IDIRSP H-PCE can greatly improve the traffic access rate and optimize the network performance.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 25, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off