Intensity Capping: a simple method to improve cross-correlation PIV results

Intensity Capping: a simple method to improve cross-correlation PIV results A common source of error in particle image velocimetry (PIV) is the presence of bright spots within the images. These bright spots are characterized by grayscale intensities much greater than the mean intensity of the image and are typically generated by intense scattering from seed particles. The displacement of bright spots can dominate the cross-correlation calculation within an interrogation window, and may thereby bias the resulting velocity vector. An efficient and easy-to-implement image-enhancement procedure is described to improve PIV results when bright spots are present. The procedure, called Intensity Capping, imposes a user-specified upper limit to the grayscale intensity of the images. The displacement calculation then better represents the displacement of all particles in an interrogation window and the bias due to bright spots is reduced. Four PIV codes and a large set of experimental and simulated images were used to evaluate the performance of Intensity Capping. The results indicate that Intensity Capping can significantly increase the number of valid vectors from experimental image pairs and reduce displacement error in the analysis of simulated images. A comparison with other PIV image-enhancement techniques shows that Intensity Capping offers competitive performance, low computational cost, ease of implementation, and minimal modification to the images. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Intensity Capping: a simple method to improve cross-correlation PIV results

Loading next page...
 
/lp/springer_journal/intensity-capping-a-simple-method-to-improve-cross-correlation-piv-ZLK5g8ifGE
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0233-7
Publisher site
See Article on Publisher Site

Abstract

A common source of error in particle image velocimetry (PIV) is the presence of bright spots within the images. These bright spots are characterized by grayscale intensities much greater than the mean intensity of the image and are typically generated by intense scattering from seed particles. The displacement of bright spots can dominate the cross-correlation calculation within an interrogation window, and may thereby bias the resulting velocity vector. An efficient and easy-to-implement image-enhancement procedure is described to improve PIV results when bright spots are present. The procedure, called Intensity Capping, imposes a user-specified upper limit to the grayscale intensity of the images. The displacement calculation then better represents the displacement of all particles in an interrogation window and the bias due to bright spots is reduced. Four PIV codes and a large set of experimental and simulated images were used to evaluate the performance of Intensity Capping. The results indicate that Intensity Capping can significantly increase the number of valid vectors from experimental image pairs and reduce displacement error in the analysis of simulated images. A comparison with other PIV image-enhancement techniques shows that Intensity Capping offers competitive performance, low computational cost, ease of implementation, and minimal modification to the images.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 15, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off