Intensification of Polycrystalline Oxide Ceramic Sintering

Intensification of Polycrystalline Oxide Ceramic Sintering Possible ways are considered for increasing oxide powder energy with regard to intensifying sintering (activation). This is achieved in four cases. First, with an increase in temperature, i.e., supply of thermal energy from outside. Second, with an increase in internal energy with mechanical grinding of particles due to an increase in surface energy and defects. Third, with an increase in internal energy during chemical methods for powder preparation under essentially nonequilibrium conditions due to an increase in surface energy, and surface and volume defect energy. Fourth, with an increase in internal energy on introducing additives as a result of lattice deformation energy with extraneous ion introduction, and also lattice defect energy on introducing heterovalent ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

Intensification of Polycrystalline Oxide Ceramic Sintering

Loading next page...
 
/lp/springer_journal/intensification-of-polycrystalline-oxide-ceramic-sintering-5d8CNGnUSH
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Material Science; Characterization and Evaluation of Materials; Materials Science, general; Ceramics, Glass, Composites, Natural Methods
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1007/s11148-015-9831-3
Publisher site
See Article on Publisher Site

Abstract

Possible ways are considered for increasing oxide powder energy with regard to intensifying sintering (activation). This is achieved in four cases. First, with an increase in temperature, i.e., supply of thermal energy from outside. Second, with an increase in internal energy with mechanical grinding of particles due to an increase in surface energy and defects. Third, with an increase in internal energy during chemical methods for powder preparation under essentially nonequilibrium conditions due to an increase in surface energy, and surface and volume defect energy. Fourth, with an increase in internal energy on introducing additives as a result of lattice deformation energy with extraneous ion introduction, and also lattice defect energy on introducing heterovalent ions.

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Oct 13, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off