Integration of the cyanobacterial DesA gene for Δ12-acyl-lipid desaturase improves potato tolerance to paraquat-induced oxidative stress

Integration of the cyanobacterial DesA gene for Δ12-acyl-lipid desaturase improves potato... The effect of potato plant (Solanum tuberosum L., cv. Desnitsa) transformation with the desA gene from Synechocystis sp. PCC 6803, encoding Δ12 acyl-lipid desaturase, on the development of plant tolerance to oxidative stress was studied. To initiate oxidative stress, plants were treated with 1 mM paraquat; this treatment enhanced oxidative processes in both wild-type and transformed potato plants via the activation of superoxide anion-radical generation. This resulted in the activated oxidation of membrane lipids and the formation of a great amount of fatty acids with coupled double bonds (conjugated dienes, CD), further breakdown of lipid molecules, and enhanced production of MDA in tissues of wild-type and transformed plants. The characteristics of oxidative stress, including lipid peroxidation, were less pronounced in transformants as compared with wild-type plants. After treatment with paraquat, activities of main antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) were much higher in wild-type than in transformed plants. Thus, expression of inserted heterologous desA gene for Δ12 acyl-lipid desaturase in potato plants resulted in improved tolerance of transformants to oxidative stress due to the more efficient maintenance of stable cell membrane structure functioning, and this permits prevention of electron “jump” to oxygen and, as a result, of accelerated ROS generation. More developed and regularly arranged chloroplast membrane system in transformants may also favor their improved tolerance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Integration of the cyanobacterial DesA gene for Δ12-acyl-lipid desaturase improves potato tolerance to paraquat-induced oxidative stress

Loading next page...
 
/lp/springer_journal/integration-of-the-cyanobacterial-desa-gene-for-12-acyl-lipid-aR0RezuPU9
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711040042
Publisher site
See Article on Publisher Site

Abstract

The effect of potato plant (Solanum tuberosum L., cv. Desnitsa) transformation with the desA gene from Synechocystis sp. PCC 6803, encoding Δ12 acyl-lipid desaturase, on the development of plant tolerance to oxidative stress was studied. To initiate oxidative stress, plants were treated with 1 mM paraquat; this treatment enhanced oxidative processes in both wild-type and transformed potato plants via the activation of superoxide anion-radical generation. This resulted in the activated oxidation of membrane lipids and the formation of a great amount of fatty acids with coupled double bonds (conjugated dienes, CD), further breakdown of lipid molecules, and enhanced production of MDA in tissues of wild-type and transformed plants. The characteristics of oxidative stress, including lipid peroxidation, were less pronounced in transformants as compared with wild-type plants. After treatment with paraquat, activities of main antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) were much higher in wild-type than in transformed plants. Thus, expression of inserted heterologous desA gene for Δ12 acyl-lipid desaturase in potato plants resulted in improved tolerance of transformants to oxidative stress due to the more efficient maintenance of stable cell membrane structure functioning, and this permits prevention of electron “jump” to oxygen and, as a result, of accelerated ROS generation. More developed and regularly arranged chloroplast membrane system in transformants may also favor their improved tolerance.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 19, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off