Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields

Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic... We demonstrate a three-step method for estimating time-resolved velocity fields using time-resolved point measurements and non-time-resolved particle image velocimetry data. A variant of linear stochastic estimation is used to obtain an initial set of time-resolved estimates of the flow field. These estimates are then used to identify a linear model of the flow dynamics. The model is incorporated into a Kalman smoother, which provides an improved set of estimates. We verify this method with an experimental study of the wake behind an elliptical-leading-edge flat plate at a thickness Reynolds number of 3,600. We find that, for this particular flow, the Kalman smoother estimates are more accurate and more robust to noise than the initial, stochastic estimates. Consequently, dynamic mode decomposition more accurately identifies coherent structures in the flow when applied to the Kalman smoother estimates. Causal implementations of the estimators, which are necessary for flow control, are also investigated. Similar outcomes are observed, with model-based estimation outperforming stochastic estimation, though the advantages are less pronounced. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields

Loading next page...
 
/lp/springer_journal/integration-of-non-time-resolved-piv-and-time-resolved-velocity-point-PNrMgZFUHj
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1429-7
Publisher site
See Article on Publisher Site

Abstract

We demonstrate a three-step method for estimating time-resolved velocity fields using time-resolved point measurements and non-time-resolved particle image velocimetry data. A variant of linear stochastic estimation is used to obtain an initial set of time-resolved estimates of the flow field. These estimates are then used to identify a linear model of the flow dynamics. The model is incorporated into a Kalman smoother, which provides an improved set of estimates. We verify this method with an experimental study of the wake behind an elliptical-leading-edge flat plate at a thickness Reynolds number of 3,600. We find that, for this particular flow, the Kalman smoother estimates are more accurate and more robust to noise than the initial, stochastic estimates. Consequently, dynamic mode decomposition more accurately identifies coherent structures in the flow when applied to the Kalman smoother estimates. Causal implementations of the estimators, which are necessary for flow control, are also investigated. Similar outcomes are observed, with model-based estimation outperforming stochastic estimation, though the advantages are less pronounced.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 5, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off