Integrating symbolic images into a multimedia database system using classification and abstraction approaches

Integrating symbolic images into a multimedia database system using classification and... Symbolic images are composed of a finite set of symbols that have a semantic meaning. Examples of symbolic images include maps (where the semantic meaning of the symbols is given in the legend), engineering drawings, and floor plans. Two approaches for supporting queries on symbolic-image databases that are based on image content are studied. The classification approach preprocesses all symbolic images and attaches a semantic classification and an associated certainty factor to each object that it finds in the image. The abstraction approach describes each object in the symbolic image by using a vector consisting of the values of some of its features (e.g., shape, genus, etc.). The approaches differ in the way in which responses to queries are computed. In the classification approach, images are retrieved on the basis of whether or not they contain objects that have the same classification as the objects in the query. On the other hand, in the abstraction approach, retrieval is on the basis of similarity of feature vector values of these objects. Methods of integrating these two approaches into a relational multimedia database management system so that symbolic images can be stored and retrieved based on their content are described. Schema definitions and indices that support query specifications involving spatial as well as contextual constraints are presented. Spatial constraints may be based on both locational information (e.g., distance) and relational information (e.g., north of). Different strategies for image retrieval for a number of typical queries using these approaches are described. Estimated costs are derived for these strategies. Results are reported of a comparative study of the two approaches in terms of image insertion time, storage space, retrieval accuracy, and retrieval time. The VLDB Journal Springer Journals

Integrating symbolic images into a multimedia database system using classification and abstraction approaches

Loading next page...
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial