Integrating symbolic images into a multimedia database system using classification and abstraction approaches

Integrating symbolic images into a multimedia database system using classification and... Symbolic images are composed of a finite set of symbols that have a semantic meaning. Examples of symbolic images include maps (where the semantic meaning of the symbols is given in the legend), engineering drawings, and floor plans. Two approaches for supporting queries on symbolic-image databases that are based on image content are studied. The classification approach preprocesses all symbolic images and attaches a semantic classification and an associated certainty factor to each object that it finds in the image. The abstraction approach describes each object in the symbolic image by using a vector consisting of the values of some of its features (e.g., shape, genus, etc.). The approaches differ in the way in which responses to queries are computed. In the classification approach, images are retrieved on the basis of whether or not they contain objects that have the same classification as the objects in the query. On the other hand, in the abstraction approach, retrieval is on the basis of similarity of feature vector values of these objects. Methods of integrating these two approaches into a relational multimedia database management system so that symbolic images can be stored and retrieved based on their content are described. Schema definitions and indices that support query specifications involving spatial as well as contextual constraints are presented. Spatial constraints may be based on both locational information (e.g., distance) and relational information (e.g., north of). Different strategies for image retrieval for a number of typical queries using these approaches are described. Estimated costs are derived for these strategies. Results are reported of a comparative study of the two approaches in terms of image insertion time, storage space, retrieval accuracy, and retrieval time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Integrating symbolic images into a multimedia database system using classification and abstraction approaches

Loading next page...
 
/lp/springer_journal/integrating-symbolic-images-into-a-multimedia-database-system-using-41MJwdjG9W
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780050068
Publisher site
See Article on Publisher Site

Abstract

Symbolic images are composed of a finite set of symbols that have a semantic meaning. Examples of symbolic images include maps (where the semantic meaning of the symbols is given in the legend), engineering drawings, and floor plans. Two approaches for supporting queries on symbolic-image databases that are based on image content are studied. The classification approach preprocesses all symbolic images and attaches a semantic classification and an associated certainty factor to each object that it finds in the image. The abstraction approach describes each object in the symbolic image by using a vector consisting of the values of some of its features (e.g., shape, genus, etc.). The approaches differ in the way in which responses to queries are computed. In the classification approach, images are retrieved on the basis of whether or not they contain objects that have the same classification as the objects in the query. On the other hand, in the abstraction approach, retrieval is on the basis of similarity of feature vector values of these objects. Methods of integrating these two approaches into a relational multimedia database management system so that symbolic images can be stored and retrieved based on their content are described. Schema definitions and indices that support query specifications involving spatial as well as contextual constraints are presented. Spatial constraints may be based on both locational information (e.g., distance) and relational information (e.g., north of). Different strategies for image retrieval for a number of typical queries using these approaches are described. Estimated costs are derived for these strategies. Results are reported of a comparative study of the two approaches in terms of image insertion time, storage space, retrieval accuracy, and retrieval time.

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off