Integrating super resolution mapping and SEBS modeling for evapotranspiration mapping at the field scale

Integrating super resolution mapping and SEBS modeling for evapotranspiration mapping at the... This study addresses the use of super resolution mapping (SRM) for precision agriculture. SRM was applied to a high resolution GeoEye image of a vineyard in Iran with the aim to determine the actual evapotranspiration (AET) and potential evapotranspiration (PET). The Surface Energy Balance System applied for that purpose requires the use of a thermal band, provided by a Landsat TM image of a 30 m resolution. Image fusion downscaled that information towards the 0.5 by 0.5 m2 scale level. The geometry was validated with an UltraCam aerial photo. Grape trees in the vineyard were planted in rows and three levels were distinguished: the field, rows and individual trees. AET values thus obtained ranged within rows from 5.32 (SD = 0.26) to 5.39 (SD = 0.24), whereas values for individual plants ranged from 5.29 (SD = 0.22) through 5.33 (SD = 0.39) to 5.36 (SD = 0.23). The study showed that AET values were obtained close to 5.71 mm day−1 derived by standard calculations at the field scale, but spatial variability was clearly present. The study concluded that modern satellite derived information in combination with recently developed image analysis methods is able to provide reliable AET values at the row level, but not yet for every individual grape tree. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Integrating super resolution mapping and SEBS modeling for evapotranspiration mapping at the field scale

Loading next page...
 
/lp/springer_journal/integrating-super-resolution-mapping-and-sebs-modeling-for-tI64XpajlT
Publisher
Springer US
Copyright
Copyright © 2015 by The Author(s)
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-015-9395-8
Publisher site
See Article on Publisher Site

Abstract

This study addresses the use of super resolution mapping (SRM) for precision agriculture. SRM was applied to a high resolution GeoEye image of a vineyard in Iran with the aim to determine the actual evapotranspiration (AET) and potential evapotranspiration (PET). The Surface Energy Balance System applied for that purpose requires the use of a thermal band, provided by a Landsat TM image of a 30 m resolution. Image fusion downscaled that information towards the 0.5 by 0.5 m2 scale level. The geometry was validated with an UltraCam aerial photo. Grape trees in the vineyard were planted in rows and three levels were distinguished: the field, rows and individual trees. AET values thus obtained ranged within rows from 5.32 (SD = 0.26) to 5.39 (SD = 0.24), whereas values for individual plants ranged from 5.29 (SD = 0.22) through 5.33 (SD = 0.39) to 5.36 (SD = 0.23). The study showed that AET values were obtained close to 5.71 mm day−1 derived by standard calculations at the field scale, but spatial variability was clearly present. The study concluded that modern satellite derived information in combination with recently developed image analysis methods is able to provide reliable AET values at the row level, but not yet for every individual grape tree.

Journal

Precision AgricultureSpringer Journals

Published: Apr 17, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off