Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice

Integrating genetic and gene expression data: application to cardiovascular and metabolic traits... The millions of common DNA variations that occur in the human population, or among inbred strains of mice and rats, perturb the expression (transcript levels) of a large fraction of the genes expressed in a particular tissue. The hundreds or thousands of common cis-acting variations that occur in the population may in turn affect the expression of thousands of other genes by affecting transcription factors, signaling molecules, RNA processing, and other processes that act in trans. The levels of transcripts are conveniently quantitated using expression arrays, and the cis- and trans-acting loci can be mapped using quantitative trait locus (QTL) analysis, in the same manner as loci for physiologic or clinical traits. Thousands of such expression QTL (eQTL) have been mapped in various crosses in mice, as well as other experimental organisms, and less detailed maps have been produced in studies of cells from human pedigrees. Such an integrative genetics approach (sometimes referred to as “genetical genomics”) is proving useful for identifying genes and pathways that contribute to complex clinical traits. The coincidence of clinical trait QTL and eQTL can help in the prioritization of positional candidate genes. More importantly, mathematical modeling of correlations between levels of transcripts and clinical traits in genetic crosses can allow prediction of causal interactions and the identification of “key driver” genes. An important objective of such studies will be to model biological networks in physiologic processes. When combined with high-density single nucleotide polymorphism (SNP) mapping, it should be feasible to identify genes that contribute to transcript levels using association analysis in outbred populations. In this review we discuss the basic concepts and applications of this integrative genomic approach to cardiovascular and metabolic diseases. Mammalian Genome Springer Journals

Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice

Loading next page...
Copyright © 2006 by Springer Science+Business Media, Inc.
Life Sciences; Anatomy; Zoology; Cell Biology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial