Integrated routing in GMPLS-based IP/WDM networks

Integrated routing in GMPLS-based IP/WDM networks The Internet traffic evolution has forced network operators to migrate toward an integrated infrastructure which brings the IP and optical layers under a unified model. The integration between the two technologies has been facilitated by the development of the Generalized Multi Protocol Label Switching. In the integrated scenario, Multilayer Traffic Engineering can be reinforced with integrated routing techniques. Integrated IP/WDM routing facilitates the routing decision phase by allowing a node to have a complete knowledge of the IP and WDM domains when accommodating traffic. This study focuses on integrated IP/WDM routing. We analyze two basic policies widely discussed in literature: one policy prioritizes the traffic accommodation on the virtual topology, while the other prioritizes the traffic accommodation on the physical topology. We show that both the mechanisms do not lead to efficient resource utilization because they tend to congest one layer more than the other one. We propose an adaptive heuristic which combines the advantages of both the policies. When accommodating traffic, the proposed approach selects the appropriate layer depending on the resource utilization being experienced in the virtual and the physical topologies. We demonstrate via simulations that the cross-layer resource optimization executed by the proposed scheme achieves significant improvements in terms of blocking ratio. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Integrated routing in GMPLS-based IP/WDM networks

Loading next page...
 
/lp/springer_journal/integrated-routing-in-gmpls-based-ip-wdm-networks-Vykn0lq2n9
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0296-5
Publisher site
See Article on Publisher Site

Abstract

The Internet traffic evolution has forced network operators to migrate toward an integrated infrastructure which brings the IP and optical layers under a unified model. The integration between the two technologies has been facilitated by the development of the Generalized Multi Protocol Label Switching. In the integrated scenario, Multilayer Traffic Engineering can be reinforced with integrated routing techniques. Integrated IP/WDM routing facilitates the routing decision phase by allowing a node to have a complete knowledge of the IP and WDM domains when accommodating traffic. This study focuses on integrated IP/WDM routing. We analyze two basic policies widely discussed in literature: one policy prioritizes the traffic accommodation on the virtual topology, while the other prioritizes the traffic accommodation on the physical topology. We show that both the mechanisms do not lead to efficient resource utilization because they tend to congest one layer more than the other one. We propose an adaptive heuristic which combines the advantages of both the policies. When accommodating traffic, the proposed approach selects the appropriate layer depending on the resource utilization being experienced in the virtual and the physical topologies. We demonstrate via simulations that the cross-layer resource optimization executed by the proposed scheme achieves significant improvements in terms of blocking ratio.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 7, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off